93 research outputs found
Acute Downregulation but Not Genetic Ablation of Murine MCU Impairs Suppressive Capacity of Regulatory CD4 T Cells
By virtue of mitochondrial control of energy production, reactive oxygen species (ROS)
generation, and maintenance of Ca2+ homeostasis, mitochondria play an essential role in modulating
T cell function. The mitochondrial Ca2+ uniporter (MCU) is the pore-forming unit in the main protein
complex mediating mitochondrial Ca2+ uptake. Recently, MCU has been shown to modulate Ca2+
signals at subcellular organellar interfaces, thus fine-tuning NFAT translocation and T cell activation.
The mechanisms underlying this modulation and whether MCU has additional T cell subpopulationspecific effects remain elusive. However, mice with germline or tissue-specific ablation of Mcu did
not show impaired T cell responses in vitro or in vivo, indicating that ‘chronic’ loss of MCU can
be functionally compensated in lymphocytes. The current work aimed to specifically investigate
whether and how MCU influences the suppressive potential of regulatory CD4 T cells (Treg). We show
that, in contrast to genetic ablation, acute siRNA-mediated downregulation of Mcu in murine Tregs
results in a significant reduction both in mitochondrial Ca2+ uptake and in the suppressive capacity
of Tregs, while the ratios of Treg subpopulations and the expression of hallmark transcription factors
were not affected. These findings suggest that permanent genetic inactivation of MCU may result in
compensatory adaptive mechanisms, masking the effects on the suppressive capacity of Tregs
NFATc1 affects mouse splenic B cell function by controlling the calcineurin–NFAT signaling network
Mouse B cells lacking NFATc1 exhibit defective proliferation, survival, isotype class switching, cytokine production, and T cell help
Polarimetry of binary systems: polars, magnetic CVs, XRBs
Polarimetry provides key physical information on the properties of
interacting binary systems, sometimes difficult to obtain by any other type of
observation. Indeed, radiation processes such as scattering by free electrons
in the hot plasma above accretion discs, cyclotron emission by mildly
relativistic electrons in the accretion shocks on the surface of highly
magnetic white dwarfs and the optically thin synchrotron emission from jets can
be observed. In this review, I will illustrate how optical/near-infrared
polarimetry allows one to estimate magnetic field strengths and map the
accretion zones in magnetic Cataclysmic Variables as well as determine the
location and nature of jets and ejection events in X-ray binaries.Comment: 26 pages, 16 figures; to be published in Astrophysics and Space
Science Library 460, Astronomical Polarisation from the Infrared to Gamma
Rays, Editors: Mignani, R., Shearer, A., S{\l}owikowska, A., Zane,
Pyruvate metabolism controls chromatin remodeling during CD4+ T cell activation
Upon antigen-specific T cell receptor (TCR) engagement, human CD4 + T cells proliferate and differentiate, a process associated with rapid transcriptional changes and metabolic reprogramming. Here, we show that the generation of extramitochondrial pyruvate is an important step for acetyl-CoA production and subsequent H3K27ac-mediated remodeling of histone acetylation. Histone modification, transcriptomic, and carbon tracing analyses of pyruvate dehydrogenase (PDH)-deficient T cells show PDH-dependent acetyl-CoA generation as a rate-limiting step during T activation. Furthermore, T cell activation results in the nuclear translocation of PDH and its association with both the p300 acetyltransferase and histone H3K27ac. These data support the tight integration of metabolic and histone-modifying enzymes, allowing metabolic reprogramming to fuel CD4 + T cell activation. Targeting this pathway may provide a therapeutic approach to specifically regulate antigen-driven T cell activation
Mechanisms of Autoantibody-Induced Pathology
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein
Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study
Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection
- …