21 research outputs found
Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload
Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high
resolution devices for hard X-ray imaging and spectroscopic studies. The new
series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical
Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the
CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of
20 keV to 150 keV, are used to image solar flares in hard X-rays. Since these
modules are essentially manufactured for commercial applications, we have
carried out a series of comprehensive tests on these modules so that they can
be confidently used in space-borne systems. These tests lead us to select the
best three pieces of the 'Gold' modules for the RT-2/CZT payload. This paper
presents the characterization of CZT modules and the criteria followed for
selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries,
along with three CZT modules, a high spatial resolution CMOS detector for high
resolution imaging of transient X-ray events. Therefore, we discuss the
characterization of the CMOS detector as well.Comment: 26 pages, 19 figures, Accepted for publication in Experimental
Astronomy (in press
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Compton polarimeter as a focal plane detector for hard X-ray telescope: Sensitivity estimation with Geant4 simulations
X-ray polarimetry can be an important tool for investigating various physical processes as well as their geometries at the celestial X-ray sources. However, X-ray polarimetry has not progressed much compared to the spectroscopy, timing and imaging mainly due to the extremely photon-hungry nature of X-ray polarimetry leading to severely limited sensitivity of X-ray polarimeters. The great improvement in sensitivity in spectroscopy and imaging was possible due to focusing X-ray optics which is effective only at the soft X-ray energy range. Similar improvement in sensitivity of polarisation measurement at soft X-ray range is expected in near future with the advent of GEM based photoelectric polarimeters. However, at energies >10 keV, even spectroscopic and imaging sensitivities of X-ray detector are limited due to lack of focusing optics. Thus hard X-ray polarimetry so far has been largely unexplored area. On the other hand, typically the polarisation degree is expected to increase at higher energies as the radiation from non-thermal processes is dominant fraction. So polarisation measurement in hard X-ray can yield significant insights into such processes. With the recent availability of hard X-ray optics (e. g. with upcoming NuSTAR, Astro-H missions) which can focus X-rays from 5 KeV to 80 KeV, sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array scintillator detectors. We have carried out detailed Geant4 simulation to estimate the modulation factor for 100 polarized beam as well as polarimetric efficiency of this configuration. We have also validated these results with a semi-analytical approach. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics
A conceptual design of hard x-ray focal plane detector for simultaneous x-ray polarimetric, spectroscopic and timing measurements
Importance of polarisation measurement of X-rays from celestial sources has been realized for long time. Such measurements can provide unique opportunity to study the behaviour of matter and radiation under extreme magnetic and gravitational fields. However sensitivity of the X-ray polarimeters has always been an issue and as a result no X-ray polarization measurement has been flown in last three decades. The situation is expected to change in near future with launch of GEMS, but these polarisation measurements will be limited to energies below 10KeV. On the other hand most of the X-ray sources are expected to have higher degree of polarisation at higher energies. With the advent of high energy focussing telescopes (e.g. NuSTAR, ASTRO-H), it is now possible to design a focal plane Compton polarimeter which can be sensitive upto 80KeV. However, X-ray polarisation measurement is extremely photon hungry. Therefore, a dedicated X-ray polarimeter always has lower sensitivity when compared to any other type of X-ray detector for equal collecting area and time. In this context, we explore a new design of hard X-ray focal plane detector which can provide simultaneous measurements of X-ray polarisation measurements along with high resolution X-ray spectroscopy as well as timing. This design employs a sandwich of a 0.5mm thick Si detector and 10mm thick plastic detector which is surrounded by a cylindrical array of scintillator detectors. Here we present results of detailed Geant4 simulations for estimating sensitivity of this configuration
Violation of Synchrotron Line of Death by the Highly Polarized GRB 160802A
GRB 160802A is one of the brightest gamma-ray bursts (GRBs) observed by the Fermi Gamma-ray Burst Monitor (GBM) in the energy range of 10-1000 keV, while at the same time it is surprisingly faint at energies greater than or similar to 2 MeV. An observation with the AstroSat/CZT Imager also provides the polarization that helps in constraining different prompt emission models using the novel joint spectra-polarimetric data. We analyze the Fermi/GBM data, and find two main bursting episodes that are clearly separated in time, one of which is particularly faint in higher energies and having certain differences in their spectra. The spectrum in general shows a hard-to-soft evolution in both the episodes. Only the later part of the first episode shows intensity tracking behavior corresponding to multiple pulses. The photon index of the spectrum is hard, and in over 90% cases, crosses even the slow cooling limit (alpha = -2/3) of an optically thin synchrotron shock model. Though such hard values are generally associated with a sub-dominant thermal emission, such a component is not statistically required in our analysis. In addition, the measured polarization in 100-300 keV is too high, pi = 85 +/- 29%, to be accommodated in such a scenario. Jitter radiation, which allows a much harder index up to alpha = + 0.5, in principle can produce high polarization, but only beyond the spectral peak, which in our case lies close to 200-300 keV during the time when most of the polarization signal is obtained. The spectro-polarimetric data seems to be consistent with a subphotospheric dissipation process occurring within a narrow jet with a sharp drop in emissivity beyond the jet edge, and viewed along its boundary
Recommended from our members
Multiwavelength Observations by XSM, Hinode, and SDO of an Active Region. Chemical Abundances and Temperatures
We have reviewed the first year of observations of the Solar X-ray Monitor
(XSM) onboard Chandrayaan-2, and the available multi-wavelength observations to
complement the XSM data, focusing on Solar Dynamics Observatory AIA and Hinode
XRT, EIS observations. XSM has provided disk-integrated solar spectra in the
1--15 keV energy range, observing a large number of microflares. We present an
analysis of multi-wavelength observations of AR 12759 during its disk crossing.
We use a new radiometric calibration of EIS to find that the quiescent AR core
emission during its disk crossing has a distribution of temperatures and
chemical abundances that does not change significantly over time. An analysis
of the XSM spectra confirms the EIS results, and shows that the low First
Ionization Potential (FIP) elements are enhanced, compared to their
photospheric values. The frequent microflares produced by the AR did not affect
the abundances of the quiescent AR core. We also present an analysis of one of
the flares it produced, SOL2020-04-09T09:32. The XSM analysis indicates
isothermal temperatures reaching 6 MK. The lack of very high-T emission is
confirmed by AIA. We find excellent agreement between the observed XSM spectrum
and the one predicted using an AIA DEM analysis. In contrast, the XRT Al-Poly /
Be-thin filter ratio gives lower temperatures for the quiescent and flaring
phases. We show that this is due to the sensitivity of this ratio to low
temperatures, as the XRT filter ratios predicted with a DEM analysis based on
EIS and AIA gives values in good agreement with the observed ones
Recommended from our members
Multiwavelength Observations of a B-class Flare Using XSM, AIA, and XRT
Abstract
We present multiwavelength observations by Chandrayaan-2/Solar X-ray Monitor, Solar Dynamics Observatory/Atmospheric Imaging Assembly, and Hinode/X-Ray Telescope (XRT) of a B-class flare observed on 2021 February 25, originating from an active region (AR 12804) near the northwest limb. The microflare lasts for ∼30 minutes and is composed of hot loops reaching temperatures of 10 MK. We report excellent agreement (within 20%) for the average effective temperatures obtained at the flare peak from all the three instruments, which have different temperature sensitivities. The XRT filter combination of Be-thin and Be-med provides an excellent opportunity to measure the high temperatures in such microflare events. The elemental abundances during the evolution of the microflare are also studied and observed to drop toward photospheric values at the flare peak time, compared to coronal values during the rise and decay phase. This is consistent with previous XSM studies.</jats:p
Role of Small-scale Impulsive Events in Heating the X-Ray Bright Points of the Quiet Sun
Abstract
Small-scale impulsive events, known as nanoflares, are thought to be one of the prime candidates that can keep the solar corona hot at its multimillion-Kelvin temperature. Individual nanoflares are difficult to detect with the current generation of instruments; however, their presence can be inferred through indirect techniques such as Differential Emission Measure (DEM) analysis. Here, we employ this technique to investigate the possibility of nanoflare heating of the quiet corona during the minimum of solar cycle 24. We estimate the DEM of disk-integrated quiet Sun and X-ray bright points (XBP) using the observations from XSM on board the Chandrayaan-2 orbiter and AIA on board the Solar Dynamic Observatory. XBPs are found to be the dominant contributor to disk-integrated X-rays, with a radiative flux of ∼2 × 105 erg cm−2 s−1. XBPs consist of small-scale loops associated with bipolar magnetic fields. We simulate such XBP loops using the EBTEL hydrodynamic code. The lengths and magnetic field strengths of these loops are obtained through a potential field extrapolation of the photospheric magnetogram. Each loop is assumed to be heated by random nanoflares having an energy that depends on the loop properties. The composite nanoflare energy distribution for all the loops has a power-law slope close to −2.5. The simulation output is then used to obtain the integrated DEM. It agrees remarkably well with the observed DEM at temperatures above 1 MK, suggesting that the nanoflare distribution, as predicted by our model, can explain the XBP heating.</jats:p