5 research outputs found

    Comparative study of different scattering geometries for the proposed Indian X-ray polarization measurement experiment using Geant4

    Full text link
    Polarization measurements in X-rays can provide unique opportunity to study the behavior of matter and radiation under extreme magnetic fields and extreme gravitational fields. Unfortunately, over past two decades, when X-ray astronomy witnessed multiple order of magnitude improvement in temporal, spatial and spectral sensitivities, there is no (or very little) progress in the field of polarization measurements of astrophysical X-rays. Recently, a proposal has been submitted to ISRO for a dedicated small satellite based experiment to carry out X-ray polarization measurement, which aims to provide the first X-ray polarization measurements since 1976. This experiment will be based on the well known principle of polarization measurement by Thomson scattering and employs the baseline design of a central low Z scatterer surrounded by X-ray detectors to measure the angular intensity distribution of the scattered X-rays. The sensitivity of such experiment is determined by the collecting area, scattering and detection efficiency, X-ray detector background, and the modulation factor. Therefore, it is necessary to carefully select the scattering geometry which can provide the highest modulation factor and thus highest sensitivity within the specified experimental constraints. The effective way to determine optimum scattering geometry is by studying various possible scattering geometries by means of Monte Carlo simulations. Here we present results of our detailed comparative study based on Geant4 simulations of five different scattering geometries which can be considered within the weight and size constraints of the proposed small satellite based X-ray polarization measurement experiment.Comment: 14 pages, 6 figures, accepted for publication in "Nuclear Inst. and Methods in Physics Research, A

    Hard X-Ray/Soft Gamma-Ray Experiments and Missions: Overview and Prospects

    No full text

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Accretion Disks and Coronae in the X-Ray Flashlight

    No full text
    corecore