155 research outputs found

    Tuotantoeläinten normaalin suolistomikrobiston kartoitus luo suolistoterveystutkimukselle perustaa

    Get PDF
    Ruoansulatuskanavan mikrobiston koostumus vaikuttaa keskeisellä tavalla eläinten terveyteen ja kasvatustuloksiin. Esimerkiksi ripulitilanteissa suoliston bakteerit vaikuttavat eläinten hyvinvointiin välittömästi, mutta lisäksi suolistomikrobeilla on pitkäkestoisia eläimen immuunivastetta ja ravitsemustilaa muuntavia vaikutuksia. Suolistomikrobiston poikkeuksellisen monimutkaisuuden vuoksi mikrobisto ja sen koostumus ovat kuitenkin vielä nykyäänkin heikosti tunnettuja. Ruoansulatuskanavan bakteeristo muodostuu poikkeuksellisen monista lajeista ja bakteeritiheys on ainutlaatuisen korkea. Perinteiset patogeenisten bakteerien tunnistamiseen kehitetyt tutkimusmenetelmät eivät ole mahdollistaneet mikrobiston kokonaisvaltaista kartoitusta. Viime vuosina kehitettyjen modernien tutkimustekniikoiden ansiosta mikrobiston tutkimusmahdollisuudet ovat kuitenkin parantuneet. Suolistomikrobiston koostumuksen kartoittaminen ja mikrobiston muutosten tutkiminen eri tilanteissa luo perustaa tulevaisuuden suolistomikrobistotutkimukselle. Nyt esiteltävässä tutkimuksessa suolistonäytteiden bakteerikoostumusta kartoitettiin koneellista sytometriaan, DNA-värjäykseen ja oligonukleotidihybridisaatioon perustuvaa menetelmää käyttäen. Tutkimusnäytteitä kerättiin porsaista, sioista, kalkkunoista, broilereista ja kanoista. Tutkimuseläimet olivat useista eri kasvatuseristä ja ne kuvastavat kunkin eläinlajin suolistomikrobistoa yleisellä tasolla. Näytteistä määritettiin kokonaisbakteerimäärät sekä keskeisimpien bakteerisukujen edustajien määrät. Erot saman eläinlajin eri yksilöiden välillä olivat huomattavasti pienempiä kuin erot eri eläinlajien välillä. Kahdesta eri porsastutkimuksesta kerättyjen ulostenäytteiden kokonaisbakteerimäärät ja eri bakteerisukujen osuudet olivat pitkälti samanlaiset. Tutkittujen cecum- ja ulostenäytteiden bakteeritiheys oli luokkaa 1011 bakteeria grammassa ja eläinlajista riippuen Bacteroides-Porphyromonas-Prevotella -ryhmän, Faecalibacterium prausnitzii -ryhmän ja  Bifidobacterium-suvun bakteerit olivat nyt tutkituista bakteereista yleisimpiä. Saadut tulokset vahvistavat käsitystä siitä, että kullakin eläinlajilla on sille ominainen mikrobisto, joka koostuu ko. eläinlajille tyypillisistä mikrobeista. Ruoansulatuskanavan mikrobit muodostavat monimutkaisen ekosysteemin, joka kuitenkin on stabiilien elinolosuhteiden vallitessa sisäisessä tasapainotilassa. Saatuja tuloksia voidaan käyttää vertailumateriaalina tulevissa suolistomikrobistotutkimuksissa ja tuloksista on hyötyä kehitettäessä suolistoterveyttä tukevaa ruokintaa

    The bacterial skin microbiome in psoriatic arthritis, an unexplored link in pathogenesis: challenges and opportunities offered by recent technological advances.

    Get PDF
    The resident microbial community, harboured by humans in sites such as the skin and gastrointestinal tract, is enormous, representing a candidate environmental factor affecting susceptibility to complex diseases, where both genetic and environmental risk factors are important. The potential of microorganisms to influence the human immune system is considerable, given their ubiquity. The impact of the host-gene-microbe interaction on the maintenance of health and the development of disease has not yet been assessed robustly in chronic inflammatory conditions. PsA represents a model inflammatory disease to explore the role of the microbiome because skin involvement and overlap with IBD implicates both the skin and gastrointestinal tract as sources of microbial triggers for PsA. In parallel with genetic studies, characterization of the host microbiota may benefit our understanding of the microbial contribution to disease pathogenesis-knowledge that may eventually inform the development of novel therapeutics

    Loss of Sex and Age Driven Differences in the Gut Microbiome Characterize Arthritis-Susceptible *0401 Mice but Not Arthritis-Resistant *0402 Mice

    Get PDF
    <div><h3>Background</h3><p>HLA-DRB1*0401 is associated with susceptibility, while HLA-DRB1*0402 is associated with resistance to developing rheumatoid arthritis (RA) and collagen-induced arthritis in humans and transgenic mice respectively. The influence of gut-joint axis has been suggested in RA, though not yet proven.</p> <h3>Methodology/Principal Findings</h3><p>We have used HLA transgenic mice carrying arthritis susceptible and -resistant HLA-DR genes to explore if genetic factors and their interaction with gut flora gut can be used to predict susceptibility to develop arthritis. Pyrosequencing of the 16S rRNA gene from the fecal microbiomes of DRB1*0401 and DRB1*0402 transgenic mice revealed that the guts of *0401 mice is dominated by a Clostridium-like bacterium, whereas the guts of *0402 mice are enriched for members of the <em>Porphyromonadaceae</em> family and <em>Bifidobacteria</em>. DRB1*0402 mice harbor a dynamic sex and age-influenced gut microbiome while DRB1*0401 mice did not show age and sex differences in gut microbiome even though they had altered gut permeability. Cytokine transcripts, measured by rtPCR, in jejuna showed differential TH17 regulatory network gene transcripts in *0401 and *0402 mice.</p> <h3>Conclusions/Significance</h3><p>We have demonstrated for the first time that HLA genes in association with the gut microbiome may determine the immune environment and that the gut microbiome might be a potential biomarker as well as contributor for susceptibility to arthritis. Identification of pathogenic commensal bacteria would provide new understanding of disease pathogenesis, thereby leading to novel approaches for therapy.</p> </div

    Dysbiotic Subgingival Microbial Communities in Periodontally Healthy Patients With Rheumatoid Arthritis

    Get PDF
    Objective: Studies that demonstrate an association between rheumatoid arthritis (RA) and dysbiotic oral microbiomes are often confounded by the presence of extensive periodontitis in these individuals. This study was undertaken to investigate the role of RA in modulating the periodontal microbiome by comparing periodontally healthy individuals with RA to those without RA. Methods: Subgingival plaque was collected from periodontally healthy individuals (22 with RA and 19 without RA), and the 16S gene was sequenced on an Illumina MiSeq platform. Bacterial biodiversity and co‐occurrence patterns were examined using the QIIME and PhyloToAST pipelines. Results: The subgingival microbiomes differed significantly between patients with RA and controls based on both community membership and the abundance of lineages, with 41.9% of the community differing in abundance and 19% in membership. In contrast to the sparse and predominantly congeneric co‐occurrence networks seen in controls, RA patients revealed a highly connected grid containing a large intergeneric hub anchored by known periodontal pathogens. Predictive metagenomic analysis (PICRUSt) demonstrated that arachidonic acid and ester lipid metabolism pathways might partly explain the robustness of this clustering. As expected from a periodontally healthy cohort, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were not significantly different between groups; however, Cryptobacterium curtum, another organism capable of producing large amounts of citrulline, emerged as a robust discriminant of the microbiome in individuals with RA. Conclusion: Our data demonstrate that the oral microbiome in RA is enriched for inflammophilic and citrulline‐producing organisms, which may play a role in the production of autoantigenic citrullinated peptides in RA

    Antibiotic use and the risk of rheumatoid arthritis: a population-based case-control study

    Get PDF
    Background: Antibiotic-induced disturbances of the human microbiota have been implicated in the development of chronic autoimmune conditions. This study aimed to assess whether antibiotic use is associated with the onset of rheumatoid arthritis (RA). Methods: A nested case-control study was conducted utilising data from the primary care Clinical Practice Research Datalink (CPRD). Patients with an incident diagnosis of RA were identified (1995–2017). Each case was matched on age, gender, and general practice to ≥ 5 controls without RA. Conditional logistic regression was used to examine previous antibiotic prescriptions and RA onset after controlling for confounding factors. Results: We identified 22,677 cases of RA, matched to 90,013 controls, with a median follow-up of 10 years before RA diagnosis. The odds of developing RA were 60% higher in those exposed to antibiotics than in those not exposed (OR 1.60; 95% CI 1.51–1.68). A dose- or frequency-dependent association was observed between the number of previous antibiotic prescriptions and RA. All classes of antibiotics were associated with higher odds of RA, with bactericidal antibiotics carrying higher risk than bacteriostatic (45% vs. 31%). Those with antibiotic-treated upper respiratory tract (URT) infections were more likely to be RA cases. However, this was not observed for URT infections not treated with antibiotics. Antifungal (OR = 1.27; 95% CI 1.20–1.35) and antiviral (OR = 1.19; 95% CI 1.14–1.24) prescriptions were also associated with increased odds of RA. Conclusion: Antibiotic prescriptions are associated with a higher risk of RA. This may be due to microbiota disturbances or underlying infections driving risk. Further research is needed to explore these mechanisms

    Altering Host Resistance to Infections through Microbial Transplantation

    Get PDF
    Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in “host” susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3β, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter “host” resistance, and a novel means to alter enteric infection and to study host-pathogen interactions

    Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction

    Get PDF
    Abstract Background Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects) differing in a variable of interest (e.g. genotype) share an experimental unit (e.g. a cage or litter) to which a treatment is applied (e.g. a drug, diet, or cage manipulation). We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. Methods The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Results Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables). It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases) to achieve a power of 80 %. Conclusions Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices for research mice. Furthermore, it dramatically illustrates the enhanced statistical power of split-plot designs, allowing many fewer animals to be used. More powerful designs can also increase the chances of replicable findings, and increase the ability of small-scale studies to yield significant results. Using mixed-strain housing for female C57BL/6, DBA/2 and BALB/c mice is therefore an effective, efficient way to promote both refinement and the reduction of animal-use in research

    Co-Housing Rodents with Different Coat Colours as a Simple, Non-Invasive Means of Individual Identification:Validating Mixed-Strain Housing for C57BL/6 and DBA/2 Mice

    Get PDF
    Standard practice typically requires the marking of laboratory mice so that they can be individually identified. However, many of the common methods compromise the welfare of the individuals being marked (as well as requiring time, effort, and/or resources on the part of researchers and technicians). Mixing strains of different colour within a cage would allow them to be readily visually identifiable, negating the need for more invasive marking techniques. Here we assess the impact that mixed strain housing has on the phenotypes of female C57BL/6 (black) and DBA/2 (brown) mice, and on the variability in the data obtained from them. Mice were housed in either mixed strain or single strain pairs for 19 weeks, and their phenotypes then assessed using 23 different behavioural, morphological, haematological and physiological measures widely used in research and/or important for assessing mouse welfare. No negative effects of mixed strain housing could be found on the phenotypes of either strain, including variables relevant to welfare. Differences and similarities between the two strains were almost all as expected from previously published studies, and none were affected by whether mice were housed in mixed- or single-strain pairs. Only one significant main effect of housing type was detected: mixed strain pairs had smaller red blood cell distribution widths, a measure suggesting better health (findings that now need replicating in case they were Type 1 errors resulting from our multiplicity of tests). Furthermore, mixed strain housing did not increase the variation in data obtained from the mice: the standard errors for all variables were essentially identical between the two housing conditions. Mixed strain housing also made animals very easy to distinguish while in the home cage. Female DBA/2 and C57BL/6 mice can thus be housed in mixed strain pairs for identification purposes, with no apparent negative effects on their welfare or the data they generate. This suggests that there is much value in exploring other combinations of strains
    corecore