21 research outputs found

    Fixed points and amenability in non-positive curvature

    Full text link
    Consider a proper cocompact CAT(0) space X. We give a complete algebraic characterisation of amenable groups of isometries of X. For amenable discrete subgroups, an even narrower description is derived, implying Q-linearity in the torsion-free case. We establish Levi decompositions for stabilisers of points at infinity of X, generalising the case of linear algebraic groups to Is(X). A geometric counterpart of this sheds light on the refined bordification of X (\`a la Karpelevich) and leads to a converse to the Adams-Ballmann theorem. It is further deduced that unimodular cocompact groups cannot fix any point at infinity except in the Euclidean factor; this fact is needed for the study of CAT(0) lattices. Various fixed point results are derived as illustrations.Comment: 33 page

    Linear Groups over General Classes of Rings

    No full text
    corecore