267 research outputs found

    Quantum cosmology of a classically constrained nonsingular Universe

    Get PDF
    The quantum cosmological version of a nonsingular Universe presented by Mukhanov and Brandenberger in the early nineties has been developed and the Hamilton Jacobi equation has been found under semiclassical (WKB) approximation. It has been pointed out that, parameterization of classical trajectories with semiclassical time parameter, for such a classically constrained system, is a nontrivial task and requires Lagrangian formulation rather than the Hamiltonian formalism.Comment: 15 page

    Black Hole Emission in String Theory and the String Phase of Black Holes

    Get PDF
    String theory properly describes black-hole evaporation. The quantum string emission by Black Holes is computed. The black-hole temperature is the Hawking temperature in the semiclassical quantum field theory (QFT) regime and becomes the intrinsic string temperature, T_s, in the quantum (last stage) string regime. The QFT-Hawking temperature T_H is upper bounded by the string temperature T_S. The black hole emission spectrum is an incomplete gamma function of (T_H - T_S). For T_H << T_S, it yields the QFT-Hawking emission. For T_H \to T_S, it shows highly massive string states dominate the emission and undergo a typical string phase transition to a microscopic `minimal' black hole of mass M_{\min} or radius r_{\min} (inversely proportional to T_S) and string temperature T_S. The string back reaction effect (selfconsistent black hole solution of the semiclassical Einstein equations) is computed. Both, the QFT and string black hole regimes are well defined and bounded.The string `minimal' black hole has a life time tau_{min} simeq (k_B c)/(G hbar [T_S]^3). The semiclassical QFT black hole (of mass M and temperature T_H) and the string black hole (of mass M_{min} and temperature T_S) are mapped one into another by a `Dual' transform which links classical/QFT and quantum string regimes.Comment: LaTex, 22 pages, Lectures delivered at the Chalonge School, Nato ASI: Phase Transitions in the Early Universe: Theory and Observations. To appear in the Proceedings, Editors H. J. de Vega, I. Khalatnikov, N. Sanchez. (Kluwer Pub

    Moving Defects in AdS/CFT

    Full text link
    We study defects of various dimensions moving through Anti-de Sitter space. Using the AdS/CFT correspondence this allows us to probe aspects of the dual quantum field theory. We focus on the energy loss experienced by these defects as they move through the CFT plasma. We find that the behavior of these physical quantities is governed by induced world-volume horizons. We identify world-volume analogs for several gravitational phenomena including black holes, the Hawking-Page phase transition and expanding cosmological horizons.Comment: 24 pages, 7 figures. Version 2 contains two added reference

    Hamilton-Jacobi Method and Gravitation

    Full text link
    Studying the behaviour of a quantum field in a classical, curved, spacetime is an extraordinary task which nobody is able to take on at present time. Independently by the fact that such problem is not likely to be solved soon, still we possess the instruments to perform exact predictions in special, highly symmetric, conditions. Aim of the present contribution is to show how it is possible to extract quantitative information about a variety of physical phenomena in very general situations by virtue of the so-called Hamilton-Jacobi method. In particular, we shall prove the agreement of such semi-classical method with exact results of quantum field theoretic calculations.Comment: To appear in the proceedings of "Cosmology, the Quantum Vacuum, and Zeta Functions": A workshop with a celebration of Emilio Elizalde's Sixtieth birthday, Bellaterra, Barcelona, Spain, 8-10 Mar 201

    Entanglement Entropy of Two Spheres

    Full text link
    We study the entanglement entropy S_{AB} of a massless free scalar field on two spheres A and B whose radii are R_1 and R_2, respectively, and the distance between the centers of them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information S_{A;B}:=S_A+S_B-S_{AB} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r>>R_1,R_2, where S_A and S_B are the entanglement entropy on the inside region of A and B, respectively. We discuss possible connections of this result with the physics of black holes.Comment: 17 pages, 9 figures; v4, added references, revised argument in section V, a typo in eq.(25) corrected, published versio

    Remarks on effective action and entanglement entropy of Maxwell field in generic gauge

    Full text link
    We analyze the dependence of the effective action and the entanglement entropy in the Maxwell theory on the gauge fixing parameter aa in dd dimensions. For a generic value of aa the corresponding vector operator is nonminimal. The operator can be diagonalized in terms of the transverse and longitudinal modes. Using this factorization we obtain an expression for the heat kernel coefficients of the nonminimal operator in terms of the coefficients of two minimal Beltrami-Laplace operators acting on 0- and 1-forms. This expression agrees with an earlier result by Gilkey et al. Working in a regularization scheme with the dimensionful UV regulators we introduce three different regulators: for transverse, longitudinal and ghost modes, respectively. We then show that the effective action and the entanglement entropy do not depend on the gauge fixing parameter aa provided the certain (aa-dependent) relations are imposed on the regulators. Comparing the entanglement entropy with the black hole entropy expressed in terms of the induced Newton's constant we conclude that their difference, the so-called Kabat's contact term, does not depend on the gauge fixing parameter aa. We consider this as an indication of gauge invariance of the contact term.Comment: 15 pages; v2: typos in eqs. (31), (32), (34), (36) corrected; discussion in section 6 expande

    Inverse magnetic catalysis in dense holographic matter

    Full text link
    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition into the lowest Landau level. We estimate IMC to persist up to 10^{19} G at low temperatures.Comment: 42 pages, 11 figures, v3: extended discussion; new appendix D; references added; version to appear in JHE

    Superradiance by mini black holes with mirror

    Full text link
    The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger angular momentum of the black hole. Possibilities of the forming the black-hole bomb at the LHC are discussed.Comment: 20 pages, 2 figures, 7 tables. More discussions. To appear in JHE
    • …
    corecore