19 research outputs found

    Particulate Matter (PM) Research Centers (1999–2005) and the Role of Interdisciplinary Center-Based Research

    Get PDF
    Objective: The U.S. Environmental Protection Agency funded five academic centers in 1999 to address the uncertainties in exposure, toxicity, and health effects of airborne particulate matter (PM) identified in the “Research Priorities for Airborne Particulate Matter” of the National Research Council (NRC). The centers were structured to promote interdisciplinary approaches to address research priorities of the NRC. In this report, we present selected accomplishments from the first 6 years of the PM Centers, with a focus on the advantages afforded by the interdisciplinary, center-based research approach. The review highlights advances in the area of ultrafine particles and traffic-related health effects as well as cardiovascular and respiratory effects, mechanisms, susceptibility, and PM exposure and characterization issues. Data sources and synthesis: The collective publications of the centers served as the data source. To provide a concise synthesis of overall findings, authors representing each of the five centers identified a limited number of topic areas that serve to illustrate the key accomplishments of the PM Centers program, and a consensus statement was developed. Conclusions: The PM Centers program has effectively applied interdisciplinary research approaches to advance PM science

    Controlled human exposures to ambient pollutant particles in susceptible populations

    Get PDF
    Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in susceptible subjects, including the elderly and patients with cardiopulmonary diseases. Controlled human exposure studies have been used to confirm the causal relationship between pollution particle exposure and adverse health effects. Earlier studies enrolled mostly young healthy subjects and have largely confirmed the capability of particles to cause adverse health effects shown in epidemiological studies. In the last few years, more studies involving susceptible populations have been published. These recent studies in susceptible populations, however, have shown that the adverse responses to particles appear diminished in these susceptible subjects compared to those in healthy subjects. The present paper reviewed and compared control human exposure studies to particles and sought to explain the "unexpected" response to particle exposure in these susceptible populations and make recommendations for future studies. We found that the causes for the discrepant results are likely multifactorial. Factors such as medications, the disease itself, genetic susceptibility, subject selection bias that is intrinsic to many controlled exposure studies and nonspecificity of study endpoints may explain part of the results. Future controlled exposure studies should select endpoints that are more closely related to the pathogenesis of the disease and reflect the severity of particle-induced health effects in the specific populations under investigation. Future studies should also attempt to control for medications and genetic susceptibility. Using a different study design, such as exposing subjects to filtered air and ambient levels of particles, and assessing the improvement in biological endpoints during filtered air exposure, may allow the inclusion of higher risk patients who are likely the main contributors to the increased particle-induced health effects in epidemiological studies

    A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    Get PDF

    Common Variation at 1q24.1 (ALDH9A1) Is a Potential Risk Factor for Renal Cancer

    Get PDF
    So far six susceptibility loci for renal cell carcinoma (RCC) have been discovered by genome-wide association studies (GWAS). To identify additional RCC common risk loci, we performed a meta-analysis of published GWAS (totalling 2,215 cases and 8,566 controls of Western-European background) with imputation using 1000 Genomes Project and UK10K Project data as reference panels and followed up the most significant association signals [22 single nucleotide polymorphisms (SNPs) and 3 indels in eight genomic regions] in 383 cases and 2,189 controls from The Cancer Genome Atlas (TCGA). A combined analysis identified a promising susceptibility locus mapping to 1q24.1 marked by the imputed SNP rs3845536 (Pcombined =2.30x10-8). Specifically, the signal maps to intron 4 of the ALDH9A1 gene (aldehyde dehydrogenase 9 family, member A1). We further evaluated this potential signal in 2,461 cases and 5,081 controls from the International Agency for Research on Cancer (IARC) GWAS of RCC cases and controls from multiple European regions. In contrast to earlier findings no association was shown in the IARC series (P=0.94; Pcombined =2.73x10-5). While variation at 1q24.1 represents a potential risk locus for RCC, future replication analyses are required to substantiate our observation

    A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein.

    No full text
    The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomics and genomics approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography, biotin/NeutrAvidin affinity chromatography, and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68, and 22 surface membrane, intracellular membrane, and membrane proteins of unknown subcellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomics studies, we analyzed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multitransmembrane proteins. Strikingly 17 of the 25 most megakaryocyte-specific genes (relative to 30 other serial analysis of gene expression libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2 domain-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation

    Motivational foci and asthma medication tactics directed towards a functional day

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There appears to be an obvious gap between a medical and patient adherence perspective. Deviating from a medication prescription could be regarded as fairly irrational, but with respect to patients' goals and/or concerns it could be seen as understandable. Thus, the aim was to elucidate adherence reasoning in relation to asthma medication.</p> <p>Methods</p> <p>This was a qualitative study; data collection and analysis procedures were conducted according to Grounded Theory methodology. Eighteen persons, aged 22 with asthma and regular asthma medication treatment, were interviewed.</p> <p>Results</p> <p>The emerged theoretical model illustrated that adherence to asthma medication was motivated by three foci, all directed towards a desired outcome in terms of <it>a functional day as desired by the patient</it>. A <it>promotive focus </it>was associated with the ambition to achieve a positive asthma outcome by being adherent either to the received prescription or to a self-adjusted dosage. A <it>preventive focus </it>was intended to ensure avoidance of a negative asthma outcome either by sticking to the prescription or by preventively overusing the medication. A <it>permissive focus </it>was associated with unstructured adherence behaviour in which medication intake was primarily triggered by asthma symptoms.</p> <p>Conclusions</p> <p>As all participants had consciously adopted functioning medication tactics that directed them towards the desired goal of a functional day. In an effort to bridge the gap between a patient- and a medical adherence perspective, patients need support in defining their desired functionality and guidance in developing a person-based medication tactic.</p
    corecore