437 research outputs found
What Can Happen When Business And Language Faculty Cooperate Across An Ocean
This is the publisher's version. Copyright 2010 by the Clute Institute.Management schools are expected to educate future professionals with the necessary skills to operate successfully in a global business environment. In this paper, the authors analyze and reflect on an experiment in interdisciplinary cooperation undertaken by business faculty at a US university and language faculty at a French School of Management. The common focus of this project has been on experiential skills development of future managers through the integration of business content, culture and language. The findings point to the crucial role that faculty play in facilitating the internationalization of the learning experience for business students
Time on a Rotating Platform
Traditional clock synchronisation on a rotating platform is shown to be
incompatible with the experimentally established transformation of time. The
latter transformation leads directly to solve this problem through noninvariant
one-way speed of light. The conventionality of some features of relativity
theory allows full compatibility with existing experimental evidence.Comment: 12 pages, Latex, no figure. Copies available at [email protected]
accepted for publication in Found. Phys. Let
Mechanocatalytic Depolymerization of Cellulose With Perfluorinated Sulfonic Acid Ionomers
Here, we investigated that the mechanocatalytic depolymerization of cellulose in the presence of Aquivion, a sulfonated perfluorinated ionomer. Under optimized conditions, yields of water soluble sugars of 90-97% were obtained using Aquivion PW98 and PW66, respectively, as a solid acid catalyst. The detailed characterization of the water soluble fraction revealed (i) the selective formation of oligosaccharides with a DP up to 11 and (ii) that depolymerization and reversion reactions concomitantly occurred during the mechanocatalytic process, although the first largely predominated. More importantly, we discussed on the critical role of water contained in Aquivion and cellulose on the efficiency of the mechanocatalytic process.CNRS Centre National de la Recherche ScientifiqueUniversity of PoitiersSpanish Ministerio de Economía y Competitividad (MINECO, CTQ2015-64425-C2-1-R)Junta de Andalucía ( FQM2012-1467
Synthesis and characterization of nanocrystalline UPuO mixed oxides
We report here the first synthesis of mixed oxide UPuO nanoparticles. The obtained nanopowders were characterized by X-ray diffraction, thermal ionization mass spectrometry, transmission electron microscopy, Raman spectroscopy, and U M edge high-energy-resolution X-ray absorption near edge structure (HR-XANES). The HR-XANES spectra give evidence for the partial oxidation of U to U. This novel route toward the formation of actinide–actinide solid solution opens research opportunities that are not accessible using bulk materials. We give details on the X-ray diffraction study on plutonium oxalate hexahydrate, as a reagent for the synthesis of such nanoparticles
Jamming non-local quantum correlations
We present a possible scheme to tamper with non-local quantum correlations in
a way that is consistent with relativistic causality, but goes beyond quantum
mechanics. A non-local ``jamming" mechanism, operating within a certain
space-time window, would not violate relativistic causality and would not lead
to contradictory causal loops. The results presented in this Letter do not
depend on any model of how quantum correlations arise and apply to any jamming
mechanism.Comment: 10 pp, LaTe
The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams
The phase shift due to the Sagnac Effect, for relativistic matter beams
counter-propagating in a rotating interferometer, is deduced on the bases of a
a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by
Sakurai, in which non relativistic quantum mechanics and newtonian physics
appear together with some intrinsically relativistic elements, is generalized
to a fully relativistic context, using the Cattaneo's splitting technique. This
approach leads to an exact derivation, in a self-consistently relativistic way,
of the Sagnac effect. Sakurai's result is recovered in the first order
approximation.Comment: 18 pages, LaTeX, 2 EPS figures. To appear in General Relativity and
Gravitatio
The relativistic Sagnac Effect: two derivations
The phase shift due to the Sagnac Effect, for relativistic matter and
electromagnetic beams, counter-propagating in a rotating interferometer, is
deduced using two different approaches. From one hand, we show that the
relativistic law of velocity addition leads to the well known Sagnac time
difference, which is the same independently of the physical nature of the
interfering beams, evidencing in this way the universality of the effect.
Another derivation is based on a formal analogy with the phase shift induced by
the magnetic potential for charged particles travelling in a region where a
constant vector potential is present: this is the so called Aharonov-Bohm
effect. Both derivations are carried out in a fully relativistic context, using
a suitable 1+3 splitting that allows us to recognize and define the space where
electromagnetic and matter waves propagate: this is an extended 3-space, which
we call "relative space". It is recognized as the only space having an actual
physical meaning from an operational point of view, and it is identified as the
'physical space of the rotating platform': the geometry of this space turns out
to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor
corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and
M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also
http://digilander.libero.it/solciclo
Time-like flows of energy-momentum and particle trajectories for the Klein-Gordon equation
The Klein-Gordon equation is interpreted in the de Broglie-Bohm manner as a
single-particle relativistic quantum mechanical equation that defines unique
time-like particle trajectories. The particle trajectories are determined by
the conserved flow of the intrinsic energy density which can be derived from
the specification of the Klein-Gordon energy-momentum tensor in an
Einstein-Riemann space. The approach is illustrated by application to the
simple single-particle phenomena associated with square potentials.Comment: 14 pages, 11 figure
Synthesis of plutonium trifluoride by hydro-fluorination and novel thermodynamic data for the PuF3-LiF system
PuF3 was synthetized by hydro-fluorination of PuO2 and subsequent reduction of the product by hydrogenation. The obtained PuF3 was analysed by X-Ray Diffraction (XRD) and found phase-pure. High purity was also confirmed by the melting point analysis using Differential Scanning Calorimetry (DSC). PuF3 was then used for thermodynamic assessment of the PuF3-LiF system. Phase equilibrium points and enthalpy of fusion of the eutectic composition were measured by DSC. XRD analyses of selected samples after DSC measurement confirm that after solidification from the liquid, the system returns to a mixture of LiF and PuF3
- …