9 research outputs found

    Microencapsulated herbal components in the diet of Lacaune ewes: impacts on physiology and milk production and quality

    Get PDF
    Abstract This study aimed to determine whether the addition of a microencapsulated herbal blend (MHB) based on thymol, carvacrol, and cinnamaldehyde in dairy sheep feed would improve production efficiency, milk quality, and animal health. Thirty lactating Lacaune ewes were divided into three groups: Control (T0), 150 mg blend/kg of feed (T150), and 250 mg blend/kg of feed (T250). Milk was measured before the beginning of the experiment (d 0), at the end of the adaptation period (d 15), and during the experiment (d 20). In milk samples, was measured the composition, somatic cell count (SCC), reactive oxygen species (ROS), lipoperoxidation (LPO), and total antioxidant capacity. The MHB improved the milk production (only T150 vs. T0 sheep on d 20), productive efficiency and feed efficiency, and reduced the milk SCC (only T250 vs. T0 sheep, on d 20), ROS and tended to reduce the milk levels of LPO (only T250 vs. T0 sheep on d 20). Also, MHB reduced the blood levels of neutrophils and ROS (only T250 vs. T0 sheep on d 20) and increased total protein and globulin levels. Thus, a microencapsulated blend of thymol, carvacrol, and cinnamaldehyde improved the productive performance and milk quality of sheep

    Essential oil of Cinnamodendron dinisii Schwanke for the control of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae)

    No full text
    ABSTRACT The use of natural compounds is a less aggressive alternative for the control of insects in stored grains, in relation to synthetic chemical agents. Plants with insecticidal properties can be used as a source of these compounds to the direct application in pest control. In this work, the essential oil of Cinnamodendron dinisii was chemically characterized and tested regarding its insecticidal and repellent effect on the control of Sitophilus zeamais in stored grains. The essential oil was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS). The insecticidal potential was evaluated through the maintenance of the insects during 24 hours in contact with several doses of the oil, in the absence of feed substrate. The Bioassays of repellency were conducted with lethal doses (LD5, LD25, LD50 and LD95) obtained from insecticidal bioassay. In order to compare the treatments, the preference index (PI) was used. The essential oil of C. dinisii had insecticidal activity against S. zeamais, causing a linear and crescent mortality with LD of 0.04, 0.17, 0.34 and 0.63 µL/cm2, respectively. The repellency ranged from 55.4% to 85.2%, using the LD values previously mentioned. The DL5 was neutral regarding repellence (PI index -0,09), but from DL25 on, the PI index was between -0.1 and -1.0, indicating repellence activity
    corecore