10 research outputs found

    Lower-hybrid dissipative cavitons and ion heating in the auroral ionosphere

    No full text
    In this paper numerical solutions of Zakharov‐type equations for lower‐hybrid (LH) waves, including pumping at the long wavelengths and dissipation at short wavelengths in the form of dissipative cavitons are described. The caviton is a quasistationary structure undergoing many sequences of collapse due to dissipation, created by ion–wave interactions, which is compensated for by constant pump action. The possibility of trapping of short‐wavelength LH oscillations by much broader density cavitons is investigated both analytically and numerically. Analytic self‐similar solutions corresponding to collapse of such cavitons are constructed and demonstrate cascading to shorter wavelengths, which develops faster than the three‐dimensional (3‐D) quasiclassical cavity contraction. Numerical solutions show the development of deep caviton modulation due to the instability of quasiclassical collapse. Results of the numerical and analytical investigation are used to explain the recent observations of cavity formation in the auroral ionosphere, and show that the measured structures could indeed arise from quasiclassical LH collapse

    Optimización del agua utilizada en los enjuagues de un sistema automatizado de limpieza en el sitio (CIP) mediante la caracterización de las propiedades fisicoquímicas en la industria cervecera

    Get PDF
    Estimar el tiempo de enjuague mínimo necesario para cumplir con los parámetros de calidad del sistema automatizado de limpieza en el sitio (CIP), mediante la caracterización de la calidad del agua empleada para lograr una reducción significativa de su consumo en la industria cervecera

    Die Tollwut

    No full text

    The Control of Influenza

    No full text

    Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV

    No full text
    A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4

    Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9GeV

    No full text
    A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. in this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4. (C) 2009 Elsevier B.V. All rights reserved

    Der Impfschaden

    No full text

    ALICE: Physics Performance Report, Volume II

    No full text
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dN(ch)/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of the subsystem designs, and a description of the offline framework and Monte Carlo event generators. The present volume, Volume II, contains the majority of the information relevant to the physics performance in proton-proton, proton-nucleus, and nucleus-nucleus collisions. Following an introductory overview, Chapter 5 describes the combined detector performance and the event reconstruction procedures, based on detailed simulations of the individual subsystems. Chapter 6 describes the analysis and physics reach for a representative sample of physics observables, from global event characteristics to hard processes
    corecore