81 research outputs found
Caught in transit: offshore interception of seafaring propagules from seven mangrove species
Many organisms are transported passively and make use of the energy of natural phenomena or other organisms to disperse. However, not all species are equally likely to disperse over long distances. In mangroves, which possess seafaring propagules, it is largely unknown which species are more likely to reach the ocean and contribute to longâdistance dispersal. This is because dispersal has been mainly studied under reductionist laboratory conditions and via localized releaseârecapture experiments. Direct interceptions of propagules at sea have hardly been attempted because of the high labor intensity. Here, we set up a local citizenâscience network and engaged local fishermen to collect floating mangrove propagules over a period of 27 months. By comparing the dispersing community of propagules from the local stands in which they were produced, the open water of the bay, and the open ocean beyond the coral reef barrier, we could study the transition between local and longâdistance dispersal. The composition of the dispersing community changed from the local stands toward the ocean, suggesting that this transition imposes an important selective filter for leaving the local system. With the exception of three rare species (Lumnitzera racemosa, Pemphis acidula, and Xylocarpus moluccensis), we intercepted dispersing propagules of every mangrove species occurring in the East African region. Most intercepted propagules were produced by Rhizophora mucronata and Ceriops tagal, followed by Bruguiera gymnorrhiza and Avicennia marina, which also represent the most abundant species in the nearby mangrove forest. A larger number of propagules were intercepted during the wet season, with fewer propagules recovered during the dry season. Overall, our study indicates that differences in the dispersal capacity of mangrove propagules are not straightforward and that some species may better disperse at local scales within an estuary or embayment, while others might be more suitable for dispersal over longer distances. The presence of such tradeâoffs may help explain why current attempts to use mangrove traits to predict mangrove species distributions at different scales have remained only moderately successful
Environmental constraint of intraguild predation: Inorganic turbidity modulates omnivory in fairy shrimps
Omnivory is widespread in food webs, with an important stabilising effect. The strength of omnivorous trophic interactions may change considerably with changes in the local environment. Shallow temporary waters are often characterised by high levels of inorganic turbidity that may directly limit the food uptake of filter-feeding organisms, but there is little evidence on how it might affect omnivorous species. Anostracans are key species of temporary waters and recent evidence suggests that these organisms are omnivorous consumers of both phyto- and zooplankton. Using Branchinecta orientalis as a model species, our aim was to test how turbidity affects the feeding of an omnivorous anostracan. To do this, we used short-term feeding experiments and stable isotope analyses, with animals collected from soda pans in eastern Austria. In the feeding experiments, algae and zooplankton were offered as food either separately or in combination. The prey type treatments were crossed with turbidity levels in a factorial design. There was a pronounced decrease in the ingested algal biomass with increasing turbidity. Conversely, ingestion rates on zooplankton were less affected by turbidity. Stable isotope analyses from field material supported our experimental results by showing a positive relationship of the trophic position of anostracans and the trophic niche of the communities with turbidity. Our results show that turbidity modulates the intraguild trophic relationship between anostracans and their prey by shifting the diet of anostracans from more herbivorous in transparent to more carnivorous in turbid waters. Thus, inorganic turbidity might also have a community-shaping role in plankton communities of temporary waters through altering trophic relationships
Predator Dispersal Determines the Effect of Connectivity on Prey Diversity
Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation
Glycosylation site prediction using ensembles of Support Vector Machine classifiers
Article discussing the performance of different computational methods for prediction of glycosylation sites from amino acid sequences
Modes, mechanisms and evidence of bet hedging in rotifer diapause traits
In this contribution, we review our knowledge on bet-hedging strategies associated with rotifer diapause. First, we describe the ecological scenario under which bet hedging is likely to have evolved in three diapause-related traits in monogonont rotifer populations: (1) the timing of sex (because diapausing eggs are produced via sexual reproduction), (2) the sexual reproduction ratio (i.e. the fraction of sexually reproducing females) and (3) the timing of diapausing egg hatching. Then, we describe how to discriminate among bet-hedging modes and discuss which modes and mechanisms better fit the variability observed in these traits in rotifers. Finally, we evaluate the strength of the empirical evidence for bet hedging in the scarce studies available, and we call for the need of research at different levels of biological complexity to fully understand bet hedging in rotifer diapause
Environmental factors shaping ungulate abundances in Poland
Population densities of large herbivores are determined by the diverse effects of density-dependent and independent environmental factors. In this study, we used the official 1998â2003 inventory data on ungulate numbers from 462 forest districts and 23 national parks across Poland to determine the roles of various environmental factors in shaping country-wide spatial patterns of ungulate abundances. Spatially explicit generalized additive mixed models showed that different sets of environmental variables explained 39 to 50Â % of the variation in red deer Cervus elaphus, wild boar Sus scrofa, and roe deer Capreolus capreolus abundances. For all of the studied species, low forest cover and the mean January temperature were the most important factors limiting their numbers. Woodland cover above 40â50Â % held the highest densities for these species. Wild boar and roe deer were more numerous in deciduous or mixed woodlands within a matrix of arable land. Furthermore, we found significant positive effects of marshes and water bodies on wild boar abundances. A juxtaposition of obtained results with ongoing environmental changes (global warming, increase in forest cover) may indicate future growth in ungulate distributions and numbers
Hydrology Affects Environmental and Spatial Structuring of Microalgal Metacommunities in Tropical Pacific Coast Wetlands
The alternating climate between wet and dry periods has important effects on the hydrology and therefore on niche-based processes of water bodies in tropical areas. Additionally, assemblages of microorganism can show spatial patterns, in the form of a distance decay relationship due to their size or life form. We aimed to test spatial and environmental effects, modulated by a seasonal flooding climatic pattern, on the distribution of microalgae in 30 wetlands of a tropical dry forest region: the Pacific coast of Costa Rica and Nicaragua. Three surveys were conducted corresponding to the beginning, the highest peak, and the end of the hydrological year during the wet season, and species abundance and composition of planktonic and benthic microalgae was determined. Variation partitioning analysis (as explained by spatial distance or environmental factors) was applied to each seasonal dataset by means of partial redundancy analysis. Our results show that microalgal assemblages were structured by spatial and environmental factors depending on the hydrological period of the year. At the onset of hydroperiod and during flooding, neutral effects dominated community dynamics, but niche-based local effects resulted in more structured algal communities at the final periods of desiccating water bodies. Results suggest that climatemediated effects on hydrology can influence the relative role of spatial and environmental factors on metacommunities of microalgae. Such variability needs to be accounted in order to describe accurately community dynamics in tropical coastal wetlands.Agencia Española de CooperaciĂłn y Desarrollo/[A1024073/09]/AECID/EspañaAgencia Española de CooperaciĂłn y Desarrollo/[A/031019/10]/AECID/EspañaAgencia Española de CooperaciĂłn y Desarrollo/[C/032994/10]/AECID/EspañaAgencia Española de CooperaciĂłn y Desarrollo/[A3/ 036594/11]/AECID/EspañaUniversidad de Costa Rica/[741-B1-517]/UCR/Costa RicaUCR::VicerrectorĂa de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::VicerrectorĂa de Docencia::Salud::Facultad de MicrobiologĂ
- âŠ