4,268 research outputs found
Sustainable growth in complex networks
Based on the empirical analysis of the dependency network in 18 Java
projects, we develop a novel model of network growth which considers both: an
attachment mechanism and the addition of new nodes with a heterogeneous
distribution of their initial degree, . Empirically we find that the
cumulative degree distributions of initial degrees and of the final network,
follow power-law behaviors: , and
, respectively. For the total number of links as a
function of the network size, we find empirically ,
where is (at the beginning of the network evolution) between 1.25 and
2, while converging to for large . This indicates a transition from
a growth regime with increasing network density towards a sustainable regime,
which revents a collapse because of ever increasing dependencies. Our
theoretical framework is able to predict relations between the exponents
, , , which also link issues of software engineering and
developer activity. These relations are verified by means of computer
simulations and empirical investigations. They indicate that the growth of real
Open Source Software networks occurs on the edge between two regimes, which are
either dominated by the initial degree distribution of added nodes, or by the
preferential attachment mechanism. Hence, the heterogeneous degree distribution
of newly added nodes, found empirically, is essential to describe the laws of
sustainable growth in networks.Comment: 5 pages, 2 figures, 1 tabl
Pion Production in Neutrino-Nucleon Reactions
We construct a model for the weak pion production off the nucleon, which in
addition to the weak excitation of the resonance and its
subsequent decay into , it includes also some background terms required
by chiral symmetry. We re-fit the form factor to the flux averaged
ANL differential cross section data, finding
a substantially smaller contribution of the pole mechanism than
traditionally assumed in the literature. We also show that the interference
between the Delta pole and the background terms produces parity-violating
contributions to the pion angular differential cross section.Comment: To appear in the proceedings of Fifth International Workshop on.
Neutrino-Nucleus Interactions in the Few-GeV Region. May 30, 2007 - June 3,
2007. Fermilab, Batavia, Illinois US
Controlling Excitations Inversion of a Cooper Pair Box Interacting with a Nanomechanical Resonator
We investigate the action of time dependent detunings upon the excitation
inversion of a Cooper pair box interacting with a nanomechanical resonator. The
method employs the Jaynes-Cummings model with damping, assuming different decay
rates of the Cooper pair box and various fixed and t-dependent detunings. It is
shown that while the presence of damping plus constant detunings destroy the
collapse/revival effects, convenient choices of time dependent detunings allow
one to reconstruct such events in a perfect way. It is also shown that the mean
excitation of the nanomechanical resonator is more robust against damping of
the Cooper pair box for convenient values of t-dependent detunings.Comment: 11 pages, 5 figure
Weak Pion Production off the Nucleon
We develop a model for the weak pion production off the nucleon, which
besides the Delta pole mechanism (weak excitation of the
resonance and its subsequent decay into ), includes also some background
terms required by chiral symmetry. We re-fit the form factor to
the flux averaged ANL differential cross
section data, finding a substantially smaller contribution of the Delta pole
mechanism than traditionally assumed in the literature. Within this scheme, we
calculate several differential and integrated cross sections, including pion
angular distributions, induced by neutrinos and antineutrinos and driven both
by charged and neutral currents. In all cases we find that the background terms
produce quite significant effects and that they lead to an overall improved
description of the data, as compared to the case where only the Delta pole
mechanism is considered. We also show that the interference between the Delta
pole and the background terms produces parity-violating contributions to the
pion angular differential cross section, which are intimately linked to odd
correlations in the contraction between the leptonic and hadronic tensors.
However, these latter correlations do not imply a genuine violation of time
reversal invariance because of the existence of strong final state interaction
effects.Comment: Typos corrected; comments adde
Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease
We propose an automatic method using dilated convolutional neural networks
(CNNs) for segmentation of the myocardium and blood pool in cardiovascular MR
(CMR) of patients with congenital heart disease (CHD).
Ten training and ten test CMR scans cropped to an ROI around the heart were
provided in the MICCAI 2016 HVSMR challenge. A dilated CNN with a receptive
field of 131x131 voxels was trained for myocardium and blood pool segmentation
in axial, sagittal and coronal image slices. Performance was evaluated within
the HVSMR challenge.
Automatic segmentation of the test scans resulted in Dice indices of
0.800.06 and 0.930.02, average distances to boundaries of
0.960.31 and 0.890.24 mm, and Hausdorff distances of 6.133.76
and 7.073.01 mm for the myocardium and blood pool, respectively.
Segmentation took 41.514.7 s per scan.
In conclusion, dilated CNNs trained on a small set of CMR images of CHD
patients showing large anatomical variability provide accurate myocardium and
blood pool segmentations
Contribution of distribution network control to voltage stability: A case study
A case study dealing with long-term voltage instability in systems hosting active distribution networks (DN) is reported in this paper. It anticipates future situations with high penetration of dispersed generation (DG), where the latter are used to keep distribution voltages within desired limits, in complement to load tap changers. The interactions between transmission and active DN are investigated on a 3108-bus test system. It involves transmission grid, large generators, and 40 DN, each with DG steered by a controller inspired by model predictive control. The reported simulations show the impact of distribution network voltage restoration, as well as the benefit of load voltage reduction actuated by the dispersed generators
Anodic reactions and the corrosion of copper in deep eutectic solvents
An analysis of the anodic reaction occurring at soluble copper anodes during the electrodeposition of copper from an ethaline-based deep eutectic solvent (DES) has been performed. It was shown by UV-Vis spectroscopy and electrochemical measurements that the dominant anodic species produced is the CuCl2- complex. In pure ethaline the current efficiency of the anodic process is 100% and the dissolution valency is one. However, in the presence of Cu(II) species the apparent dissolution valency measured gravimetrically was typically less than unity, corresponding to an observed mass loss greater than that expected from Faraday’s law. Moreover, the apparent dissolution valency showed a marked dependence on the electrode rotation rate, Cu(II) concentration and the water content of the deep eutectic solvent. These observations were consistent with a corrosion reaction occurring in parallel with anodic dissolution. The most likely corrosion process is the comproportionation reaction: 2CuCl2- CuCl42- + Cu. Voltammetric data indicate that the rate of this process is controlled by the mass transport of the CuCl42- complex to the surface and can readily explain the observed dissolution valency dependencies. Finally, it is noted that anomalous dissolution of Cu anodes in deep eutectic solvents makes their implementation as soluble anodes problematic
Particles adsorbed at various non-aqueous liquid-liquid interfaces
Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature. Non-aqueous liquid-liquid interfaces in which water is replaced by other polar solvents have properties similar to those of water-oil interfaces. Nanocomposites of non-aqueous immiscible polymer blends containing inorganic particles at the interface are of great interest industrially and consequently more work has been devoted to them. By contrast, the behaviour of particles adsorbed at oil-oil interfaces in which both oils are immiscible and of low dielectric constant (ε < 3) is scarcely studied. Hydrophobic particles are required to stabilise these oil-oil emulsions due to their irreversible adsorption, high interfacial activity and elastic shell behaviour
Activity ageing in growing networks
We present a model for growing information networks where the ageing of a
node depends on the time at which it entered the network and on the last time
it was cited. The model is shown to undergo a transition from a small-world to
large-world network. The degree distribution may exhibit very different shapes
depending on the model parameters, e.g. delta-peaked, exponential or power-law
tailed distributions.Comment: 9 pages, 2 figure
Analysis of loss of life of dry-type WTSU transformers in offshore wind farms
Currently, dry-type transformers are commonly installed as wind turbine step-up (WTSU) transformers, especially in offshore wind farms. Due to their low flammability and resistance to moisture, their performance is optimal in offshore platforms. Nonetheless, their thermal-electrical degradation must be carefully considered given the special wind and weather conditions in marine environments. The present paper studies the thermal aging of dry-type WTSU transformers in offshore wind farms considering the most thermally stressed location i.e. the winding hot-spot. The estimation of the transformer lifetime consumption introduced in this work can be applied in the framework of digital twins for diagnostic and prognostic monitoring purposes The thermal degradation study is based on a typical offshore load profile and includes the analysis of the impact of several transformer characteristics and operating conditions. As a result of the analysis, it can be concluded that lower temperature insulations, forced air cooling systems, a lower mean winding temperature rise and cool ambient temperatures lead to decreased loss of life values. Also, the present work suggests the suitability of considering thermal degradation studies as an optimal sizing factor for offshore WTSU given the low ambient temperatures in marine environment and the low capacity factors.The authors gratefully acknowledge the Support of the Basque Government (project ELKARTEK KK - 2018/00096 and GISEL research group IT1191-19), as well as of the University of the Basque Country UPV/EHU (research group unding GIU18/181)
- …