2,636 research outputs found

    The Power Manager for the LHCb On-Line Farm

    Get PDF
    The Power Manager is a tool of the LHCb FMC (Farm Monitoring and Control System) which allows - in an OS-independent manner and without requiring expensive network-controlled power distributors - to switch the farm nodes on and off, and to monitor their physical condition: power status (on/off), temperatures, fan speeds and voltages. The Power Manager can operate on farm nodes whose motherboards and network interface cards implement the IPMI (Intelligent Platform Management Interface) specifications, version 1.5 or subsequent, and copes with several IPMI limitations

    The Process Controller for the LHCb On-LIne Farm

    Get PDF
    The Process Controller is a tool of the LHCb FMC (Farm Monitoring and Control System) in charge of keeping a list of applications up and running on the farm nodes. It tipically runs on a few control PCs each one watching ~200 farm nodes and performs its task by maintaining the list of scheduled applications for each controlled farm node and by interacting with the Task Manager Servers running on the farm nodes to start processes, to obtain the notification of process termination, to re-spawn the terminated processes (if requested) and to stop processes. Processes can be added to or removed from the scheduled application list for one or more nodes by means of DIM commands, while DIM services provide the list of scheduled applications for each controlled farm node together with their properties, the number of re-spawns and the re-spawn times

    Lipase catalysed oxidations in a sugar-derived natural deep eutectic solvent

    Get PDF
    Chemoenzymatic oxidations involving the CAL-B/H2O2 system was developed in a sugar derived Natural Deep Eutectic Solvent (NaDES) composed by a mixture of glucose, fructose and sucrose. Good to excellent conversions of substrates like cyclooctene, limonene, oleic acid and stilbene to their corresponding epoxides, cyclohexanone to its corresponding lactone and 2-phenylacetophenone to its corresponding ester, demonstrate the viability of the sugar NaDES as a reaction medium for epoxidation and Baeyer-Villiger oxidation

    Invariant mass line shape of B -> PP decays at LHCb

    Get PDF
    The family of B meson decays into pairs of charmless charged pseudo-scalar mesons comprises many different channels. In order to disentagle the overlapped mass peaks of the various decay modes, an accurate description of the invariant mass distribution of each mode is required. In particular, the invariant mass parameterization must take into account the effect of QED final state radiation, which leads to the presence of a long tail on the lower side of the mass peak. In this document we propose a new parameterization based on a complete QED calculation of the photon emission rate and we compare it to a simpler one based on phenomenological arguments. Furthermore, we show how the shape of the invariant mass distributions under the pi+pi- mass hypothesis, for every decay mode of interest, can be described very precisely by means of analytical calculations

    Update of the Unitarity Triangle Analysis

    Full text link
    We present the status of the Unitarity Triangle Analysis (UTA), within the Standard Model (SM) and beyond, with experimental and theoretical inputs updated for the ICHEP 2010 conference. Within the SM, we find that the general consistency among all the constraints leaves space only to some tension (between the UTA prediction and the experimental measurement) in BR(B -> tau nu), sin(2 beta) and epsilon_K. In the UTA beyond the SM, we allow for New Physics (NP) effects in (Delta F)=2 processes. The hint of NP at the 2.9 sigma level in the B_s-\bar B_s mixing turns out to be confirmed by the present update, which includes the new D0 result on the dimuon charge asymmetry but not the new CDF measurement of phi_s, being the likelihood not yet released.Comment: 4 pages, 2 figures, Proceedings of the 35th International Conference of High Energy Physics - ICHEP2010 (July 22-28, 2010, Paris

    Quantum Gravity Effects in Black Holes at the LHC

    Get PDF
    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 11 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC.Comment: 14 pages, 8 figures, extended version of hep-ph/0601243 with new analysis of final products, final version accepted for publication in J. Phys.

    The UTfit Collaboration Report on the Status of the Unitarity Triangle beyond the Standard Model I. Model-independent Analysis and Minimal Flavour Violation

    Full text link
    Starting from a (new physics independent) tree level determination of rhobar and etabar, we perform the Unitarity Triangle analysis in general extensions of the Standard Model with arbitrary new physics contributions to loop-mediated processes. Using a simple parameterization, we determine the allowed ranges of non-standard contributions to |Delta F|=2 processes. Remarkably, the recent measurements from B factories allow us to determine with good precision the shape of the Unitarity Triangle even in the presence of new physics, and to derive stringent constraints on non-standard contributions to |Delta F|=2 processes. Since the present experimental constraints favour models with Minimal Flavour Violation, we present the determination of the Universal Unitarity Triangle that can be defined in this class of extensions of the Standard Model. Finally, we perform a combined fit of the Unitarity Triangle and of new physics contributions in Minimal Flavour Violation, reaching a sensitivity to a new physics scale of about 5 TeV. We also extrapolate all these analyses into a "year 2010" scenario for experimental and theoretical inputs in the flavour sector. All the results presented in this paper are also available at the URL http://www.utfit.org, where they are continuously updated.Comment: 29 pages, 56 figure

    Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo

    Get PDF
    A recent genome wide association study identified the gene encoding lemur tyrosine kinase-2 (LMTK2) as a susceptibility gene for prostate cancer. The identified genetic alteration is within intron 9 but the mechanisms by which LMTK2 may impact upon prostate cancer are not clear because the functions of LMTK2 are poorly understood. Here, we show that LMTK2 regulates a known pathway that controls phosphorylation of kinesin-1 light chain-2 (KLC2) by glycogen synthase kinase-3β (GSK3β). KLC2 phosphorylation by GSK3β induces release of cargo from KLC2. LMTK2 signals via protein phosphatase-1C (PP1C) to increase inhibitory phosphorylation of GSK3β on serine-9 that reduces KLC2 phosphorylation and promotes binding of the known KLC2 cargo Smad2. Smad2 signals to the nucleus in response to transforming growth factor-β (TGFβ) receptor stimulation and transport of Smad2 by kinesin-1 is required for this signalling. We show that siRNA loss of LMTK2 not only reduces binding of Smad2 to KLC2 but also inhibits TGFβ-induced Smad2 signalling. Thus, LMTK2 may regulate the activity of kinesin-1 motor function and Smad2 signalling

    Storage Infrastructure at the INFN LHC Tier-1

    Get PDF
    In this paper we will describe the Storage Infrastructure of the INFN-CNAF Tier-1, used to store data of High Energy Physics experiments, in particular those operating at the Large Hadron Collider
    • …
    corecore