3 research outputs found

    Application of atomic force microscopy for investigation of Na<sup>+</sup>,K<sup>+</sup>-ATPase signal-transducing function

    Get PDF
    The Young’s modulus of 10–12-day-old chick embryos’ sensory neurons cultivated in dissociated cell culture was measured using a PeakForce Quantitative Nanomechanical Mapping atomic force microscopy. The native cells were tested in control experiments and after application of ouabain. At low “endogenous” concentration of 10−10 M, ouabain tended to increase the rigidity of sensory neurons. We hypothesize that this trend resulted from activation of Na+,K+-ATPase signal-transducing function

    Organotypic tissue culture investigation of homocysteine thiolactone cardiotoxic effect

    Get PDF
    Homocysteine thiolactone was demonstrated to inhibit the growth of 10–12-day-old chicken embryo cardiac tissue explants at 7 × 10−9 −1 × 10−3 M concentrations in a dose-dependent manner. The maximal cardiotoxic effect of homocysteine thiolactone was detected at 1 × 10−3 M, which corresponds to severe hyperhomocysteinemia. The results of experiments on culturing of cardiac tissue explants in the medium containing homocysteine thiolactone (1 × 10−3 M) and ouabain at concentrations regulating the signal-transducing (1 × 10−10 M) and pumping (1 × 10−8 M) functions of Na+,K+ -ATPase indicate that the cardiotoxic effect of homocysteine thiolactone is supposed to result from inhibition of the Na+,K+ -ATPase pumping function
    corecore