13 research outputs found

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Exercise therapy in Type 2 diabetes

    Get PDF
    Structured exercise is considered an important cornerstone to achieve good glycemic control and improve cardiovascular risk profile in Type 2 diabetes. Current clinical guidelines acknowledge the therapeutic strength of exercise intervention. This paper reviews the wide pathophysiological problems associated with Type 2 diabetes and discusses the benefits of exercise therapy on phenotype characteristics, glycemic control and cardiovascular risk profile in Type 2 diabetes patients. Based on the currently available literature, it is concluded that Type 2 diabetes patients should be stimulated to participate in specifically designed exercise intervention programs. More attention should be paid to cardiovascular and musculoskeletal deconditioning as well as motivational factors to improve long-term treatment adherence and clinical efficacy. More clinical research is warranted to establish the efficacy of exercise intervention in a more differentiated approach for Type 2 diabetes subpopulations within different stages of the disease and various levels of co-morbidity

    Exercise modalities and endothelial function: a systematic review and dose-response meta-analysis of randomized controlled trials.

    No full text
    Background: Regular exercise is associated with enhanced nitric oxide (NO) bioavailability. Flow-mediated dilation (FMD) is used widely to assess endothelial function (EF) and NO release. Objectives: The aims of this systematic review and meta-analysis were to (i) investigate the effect of exercise modalities (aerobic, resistance or combined) on FMD; and (ii) determine which exercise and participant characteristics are most effective in improving FMD. Methods: We searched the MEDLINE, Embase, Cochrane Library, and Scopus databases for studies that met the following criteria: (i) randomized controlled trials of exercise with comparative non-exercise, usual care or sedentary groups; (ii) duration of exercise intervention ≥4 weeks; (iii) age ≥18 years; and (iv) EF measured by FMD before and after the intervention. Weighted mean differences (WMDs) with 95 % confidence interval were entered into a random effect model to estimate the pooled effect of the exercise interventions. Results: All exercise modalities enhanced EF significantly: aerobic (WMD 2.79, 95 % CI 2.12–3.45, p = 0.0001), resistance (WMD 2.52, 95 % CI 1.11–3.93, p = 0.0001) and combined (WMD 2.07, 95 % CI 0.70–3.44, p = 0.003). A dose–response relationship was observed between aerobic exercise intensity and improvement in EF. A 2 metabolic equivalents (MET) increase in absolute exercise intensity or a 10 % increase in relative exercise intensity resulted in a 1 % unit improvement in FMD. There was a positive relationship between frequency of resistance exercise sessions and improvement in EF (β 1.14, CI 0.16–2.12, p = 0.027). Conclusions: All exercise modalities improve EF significantly and there was a significant, positive relationship between aerobic exercise intensity and EF. Greater frequency, rather than intensity, of resistance exercise training enhanced EF

    Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer’s disease in T2DM patients

    No full text
    corecore