5 research outputs found

    BioMAX the first macromolecular crystallography beamline at MAX IV Laboratory

    Get PDF
    BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi bend achromat storage ring. Due to the low emittance storage ring, BioMAX has a parallel, high intensity X ray beam, even when focused down to 20 mm 5 mm using the bendable focusing mirrors. The beam is tunable in the energy range 5 25 keV using the in vacuum undulator and the horizontally deflecting doublecrystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state of the art instrumentation, a high degree of automation, a user friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high viscosity extruder injector or the MD3 as a fixedtarget scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 mm x 1 mm beam focus and a flux up to 10 15 photons s 1 with main applications in serial crystallography, room temperature structure determinations and time resolved experiment

    Unveiling the Biochemistry of the Epigenetic Regulator SMYD3

    No full text
    SET and MYND domain-containing protein 3 (SMYD3) is a lysine methyltransferase that plays a central role in a variety of cancer diseases, exerting its pro-oncogenic activity by methylation of key proteins, of both nuclear and cytoplasmic nature. However, the role of SMYD3 in the initiation and progression of cancer is not yet fully understood and further biochemical characterization is required to support the discovery of therapeutics targeting this enzyme. We have therefore developed robust protocols for production, handling, and crystallization of SMYD3 and biophysical and biochemical assays for clarification of SMYD3 biochemistry and identification of useful lead compounds. Specifically, a time-resolved biosensor assay was developed for kinetic characterization of SMYD3 interactions. Functional differences in SMYD3 interactions with its natural small molecule ligands SAM and SAH were revealed, with SAM forming a very stable complex. A variety of peptides mimicking putative substrates of SMYD3 were explored in order to expose structural features important for recognition. The interaction between SMYD3 and some peptides was influenced by SAM. A nonradioactive SMYD3 activity assay using liquid chromatography-mass spectrometry (LC-MS) analysis explored substrate features of importance also for methylation. Methylation was notable only toward MAP kinase kinase kinase 2 (MAP3K2_K260)-mimicking peptides, although binary and tertiary complexes were detected also with other peptides. The analysis supported a random bi-bi mechanistic model for SMYD3 methyltransferase catalysis. Our work unveiled complexities in SMYD3 biochemistry and resulted in procedures suitable for further studies and identification of novel starting points for design of effective and specific leads for this potential oncology target

    FragMAX The fragment screening platform at the MAX IV Laboratory

    Get PDF
    Advances in synchrotron storage rings and beamline automation have pushed data-collection rates to thousands of data sets per week. With this increase in throughput, massive projects such as in-crystal fragment screening have become accessible to a larger number of research groups. The quality of support offered at large-scale facilities allows medicinal chemistry-focused or biochemistry-focused groups to supplement their research with structural biology. Preparing the experiment, analysing multiple data sets and prospecting for interesting complexes of protein and fragments require, for both newcomers and experienced users, efficient management of the project and extensive computational power for data processing and structure refinement. Here, FragMAX, a new complete platform for fragment screening at the BioMAX beamline of the MAX IV Laboratory, is described. The ways in which users are assisted in X-ray-based fragment screenings and in which the fourth-generation storage ring available at the facility is best exploited are also described

    FragMAXapp crystallographic fragment screening data analysis and project management system

    Get PDF
    Crystallographic fragment screening CFS has become one of the major techniques for screening compounds in the early stages of drug discovery projects. Following the advances in automation and throughput at modern macromolecular crystallography beamlines, the bottleneck for CFS has shifted from collecting data to organizing and handling the analysis of such projects. The complexity that emerges from the use of multiple methods for processing and refinement and to search for ligands requires an equally sophisticated solution to summarize the output, allowing researchers to focus on the scientific questions instead of on software technicalities. FragMAXapp is the fragment screening project management tool designed to handle CFS projects at MAX IV Laboratory. It benefits from the powerful computing infrastructure of large scale facilities and, as a web application, it is accessible from everywher
    corecore