2 research outputs found
Glide and Superclimb of Dislocations in Solid He
Glide and climb of quantum dislocations under finite external stress,
variation of chemical potential and bias (geometrical slanting) in Peierls
potential are studied by Monte Carlo simulations of the effective string model.
We treat on unified ground quantum effects at finite temperatures . Climb at
low is assisted by superflow along dislocation core -- {\it superclimb}.
Above some critical stress avalanche-type creation of kinks is found. It is
characterized by hysteretic behavior at low . At finite biases gliding
dislocation remains rough even at lowest -- the behavior opposite to
non-slanted dislocations. In contrast to glide, superclimb is characterized by
quantum smooth state at low temperatures even for finite bias. In some
intermediate -range giant values of the compressibility as well as
non-Luttinger type behavior of the core superfluid are observed.Comment: Updated version submitted to JLTP as QFS2010 proceedings; 11 pages, 6
figure