239 research outputs found

    Determination of the Higgs-boson couplings and H-A mixing in the generalized SM-like Two Higgs Doublet Model

    Full text link
    The feasibility of measuring the Higgs-boson properties at the Photon Collider at TESLA has been studied in detail for masses between 200 and 350 GeV, using realistic luminosity spectra and detector simulation. We consider the Two Higgs Doublet Model (II) with SM-like Yukawa couplings for h, parametrized by only one parameter (tan(beta)). The combined measurement of the invariant-mass distributions in the ZZ and W+W- decay-channels is sensitive to both the two-photon width Gamma_{gamma gamma} and phase Phi_{gamma gamma}. From the analysis including systematic uncertainties we found out that after one year of Photon Collider running with nominal luminosity the expected precision in the measurement of tan(beta) is of the order of 10%, for both light (h) and heavy (H) scalar Higgs bosons. The H-A mixing angle Phi_{HA}, characterizing a weak CP violation in the model with two Higgs doublets, can be determined to about 100 mrad, for low tan(beta).Comment: 17 pages, 9 figures; published versio

    Spin superradiance versus atomic superradiance

    Full text link
    A comparative analysis is given of spin superradiance and atomic superradiance. Their similarities and distinctions are emphasized. It is shown that, despite a close analogy, these phenomena are fundamentally different. In atomic systems, superradiance is a self-organized process, in which both the initial cause, being spontaneous emission, as well as the collectivizing mechanism of their interactions through the common radiation field, are of the same physical nature. Contrary to this, in actual spin systems with dipole interactions, the latter are the major reason for spin motion. Electromagnetic spin interactions through radiation are negligible and can never produce collective effects. The possibility of realizing superradiance in molecular magnets by coupling them to a resonant circuit is discussed.Comment: Latex file, 12 pages, no figure

    Absence of spin superradiance in resonatorless magnets

    Full text link
    A spin system is considered with a Hamiltonian typical of molecular magnets, having dipole-dipole interactions and a single-site magnetic anisotropy. In addition, spin interactions through the common radiation field are included. A fully quantum-mechanical derivation of the collective radiation rate is presented. An effective narrowing of the dipole-dipole attenuation, due to high spin polarization is taken into account. The influence of the radiation rate on spin dynamics is carefully analysed. It is shown that this influence is completely negligible. No noticeable collective effects, such as superradiance, can appear in molecular magnets, being caused by electromagnetic spin radiation. Spin superradiance can arise in molecular magnets only when these are coupled to a resonant electric circuit, as has been suggested earlier by one of the authors in Laser Phys. {\bf 12}, 1089 (2002).Comment: Latex file, 14 pages, 5 figure

    Study of the Higgs-boson decays into WW and ZZ at the Photon Collider

    Get PDF
    Production of the Standard Model Higgs-boson at the Photon Collider at TESLA is studied for the Higgs-boson masses above 150 GeV. Simulation of signal and background processes takes into account realistic luminosity spectra and detector effects. In the considered mass range, large interference effects are expected in the W+W- decay channel. By reconstructing W+W- and ZZ final states, not only the h->gamma gamma partial width can be measured, but also the relative phase of the scattering amplitude. This opens a new window for the precise determination of the Higgs-boson couplings. Models with heavy, fourth-generation fermions and with enlarged Higgs sector (2HDM (II)) are considered.Comment: 19 pages, 18 figures; updated version with improved precision of estimate

    Introduction to the Photon Collider

    Full text link
    The purpose of this Introduction, presented at PHOTON2007, is to provide an overview of the basic principles, possible parameters, some technical aspects and the physics program of the photon collider and discuss its status within the ILC project.Comment: Talk at Photon2007, Paris, July 9-13, 2007, to be published in Nucl. Phys. B, 17 pp, Latex, 10 .eps figure

    From Coherent Modes to Turbulence and Granulation of Trapped Gases

    Full text link
    The process of exciting the gas of trapped bosons from an equilibrium initial state to strongly nonequilibrium states is described as a procedure of symmetry restoration caused by external perturbations. Initially, the trapped gas is cooled down to such low temperatures, when practically all atoms are in Bose-Einstein condensed state, which implies the broken global gauge symmetry. Excitations are realized either by imposing external alternating fields, modulating the trapping potential and shaking the cloud of trapped atoms, or it can be done by varying atomic interactions by means of Feshbach resonance techniques. Gradually increasing the amount of energy pumped into the system, which is realized either by strengthening the modulation amplitude or by increasing the excitation time, produces a series of nonequilibrium states, with the growing fraction of atoms for which the gauge symmetry is restored. In this way, the initial equilibrium system, with the broken gauge symmetry and all atoms condensed, can be excited to the state, where all atoms are in the normal state, with completely restored gauge symmetry. In this process, the system, starting from the regular superfluid state, passes through the states of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the state of normal chaotic fluid in turbulent regime. Both theoretical and experimental studies are presented.Comment: Latex file, 25 pages, 4 figure

    ZZγZZ\gamma and ZγγZ\gamma\gamma couplings in γe\gamma e collision with polarized beams

    Full text link
    The potential of γ\gammae mode of linear e+ee^{+}e^{-} collider to probe ZZγZZ\gamma and ZγγZ\gamma\gamma vertices is investigated through the Z boson production from the procees γeZe\gamma e\to Z e. Considering the longitudinal and transverse polarization states of the Z boson and incoming polarized beams we find the 95% C.L. limits on the form factors h3Zh_{3}^{Z}, h4Zh_{4}^{Z}, h3γh_{3}^{\gamma} and h4γh_{4}^{\gamma} with integrated luminosity 500fb1fb^{-1} and s=\sqrt{s}=0.5, 1, 1.5 TeV energies. It is shown that the polarization can improve sensitivities by factors 2-3 depending on the energy.Comment: 12 pages, 8 EPS figure

    Using Scalars to Probe Theories of Low Scale Quantum Gravity

    Get PDF
    Arkani-Hamed, Dimopoulos and Dvali have recently suggested that gravity may become strong at energies near 1 TeV which would remove the hierarchy problem. Such a scenario can be tested at present and future colliders since the exchange of towers of Kaluza-Klein gravitons leads to a set of new dimension-8 operators that can play important phenomenological roles. In this paper we examine how the production of pairs of scalars at e+ee^+e^-, γγ\gamma \gamma and hadron colliders can be used to further probe the effects of graviton tower exchange. In particular we examine the tree-level production of pairs of identical Higgs fields which occurs only at the loop level in both the Standard Model and its extension to the Minimal Supersymmetric Standard Model. Cross sections for such processes are found to be potentially large at the LHC and the next generation of linear colliders. For the γγ\gamma\gamma case the role of polarization in improving sensitivity to graviton exchange is emphasized.Comment: 32 pages, 12 figures, latex, remarks added to tex

    Twin-photon techniques for photo-detector calibration

    Full text link
    The aim of this review paper is to enlighten some recent progresses in quantum optical metrology in the part of quantum efficiency measurements of photo-detectors performed with bi-photon states. The intrinsic correlated nature of entangled photons from Spontaneous Parametric Down Conversion phenomenon has opened wide horizons to a new approach for the absolute measurement of photo-detector quantum efficiency, outgoing the requirement for conventional standards of optical radiation; in particular the simultaneous feature of the creation of conjugated photons led to a well known technique of coincidence measurement, deeply understood and implemented for standard uses. On the other hand, based on manipulation of entanglement developed for Quantum Information protocols implementations, a new method has been proposed for quantum efficiency measurement, exploiting polarisation entanglement in addition to energy-momentum and time ones, that is based on conditioned polarisation state manipulation. In this review, after a general discussion on absolute photo-detector calibration, we compare these different methods, in order to give an accurate operational sketch of the absolute quantum efficiency measurement state of the art

    JINR-IAP FEM oscillator with Bragg resonator

    No full text
    A FEM-oscillator with a reversed guide magnetic field and a Bragg resonator as a RF radiation source for collider applications was studied. The configuration with a step of the corrugation phase is proved to be advantageous. It possesses such features as a high efficiency, precise tunability of the operating frequency and a narrow spectral band. It is demonstrated experimentally that such an oscillator is capable of operating at frequencies of ~30 GHz in single-mode regime with the frequency tuning in interval up to 6%. Frequency and spectrum measurements have been performed with precision of ~0.1%
    corecore