6 research outputs found

    Influence of 5-fluorouracil-loaded microsphere formulation on efficient rat glioma radiosensitization

    Get PDF
    PURPOSE: To determine (i) the efficiency of radiosensitizing 5-FU-loaded microspheres and (ii) the impact of microparticle formulation on response to treatment. METHODS: C6 tumor-bearing rats were stereotactically implanted with microspheres and/or allocated to: control groups (untreated) or treatment (only radiotherapy; fast-release 5-FU microspheres + radiotherapy; slow-release 5-FU microspheres + radiotherapy). The next day, fractionated radiotherapy, limited to the hemibrain, was initiated in all treated animals. The irradiation cycle included 36 Gy, given in 9 sessions for 3 consecutive weeks. Tumor development was assessed by T2-weighted MRI. RESULTS: 5-FU microspheres associated with radiotherapy caused a 47% complete remission rate (9/19) as opposed to the 8% rate (1/12) when radiotherapy alone or 0% in control animals. Drug delivery for 3 weeks produced better survival results (57%) compared to one-week sustained release (41%). MR images showed exponentially increasing tumor volumes during the first half of the radiotherapy cycle, followed by a decrease, and the disappearance of the tumor if survival exceeded 120 days. CONCLUSIONS: 5-FU controlled delivery is a promising strategy for radiosensitizing gliomas. Drug delivery system formulation is unambiguously implicated in both the response to treatment and the limitation of toxic side effects

    Release kinetics of 5-fluorouracil-loaded microspheres on an experimental rat glioma.

    Get PDF
    BACKGROUND: Biodegradable loaded systems are promising devices for controlled and sustained release of anticancer drugs to brain tumours. We investigated the influence of drug-release profiles of 5-fluorouracil-loaded microspheres designed for the treatment of malignant gliomas. MATERIALS AND METHODS: 2.5 mg 5-FU delivered by either fast. (1 formulation) or slow-(2 formulations) 5-FU release microspheres (MS) were tested in C6-glioma rat brains. Tumor response was assessed by T2-weighted MRI. RESULTS: All treated animals, whatever the release profile considered, displayed a comparable 50% increase in life span versus controls. Delays in C6-glioma development appeared to correspond to the in vitro release periods of MS. In terms of curative prospect, complete remission was only observed in 11% of 5-FU-treated animals (4 out of 38). CONCLUSION: Formulation was unambiguously implicated in the response observed after local delivery of 5-FU to glioma
    corecore