25 research outputs found

    Contact complete integrability

    Full text link
    Complete integrability in a symplectic setting means the existence of a Lagrangian foliation leaf-wise preserved by the dynamics. In the paper we describe complete integrability in a contact set-up as a more subtle structure: a flag of two foliations, Legendrian and co-Legendrian, and a holonomy-invariant transverse measure of the former in the latter. This turns out to be equivalent to the existence of a canonical R⋉Rn−1\R\ltimes \R^{n-1} structure on the leaves of the co-Legendrian foliation. Further, the above structure implies the existence of nn contact fields preserving a special contact 1-form, thus providing the geometric framework and establishing equivalence with previously known definitions of contact integrability. We also show that contact completely integrable systems are solvable in quadratures. We present an example of contact complete integrability: the billiard system inside an ellipsoid in pseudo-Euclidean space, restricted to the space of oriented null geodesics. We describe a surprising acceleration mechanism for closed light-like billiard trajectories

    Classical A_n--W-Geometry

    Full text link
    This is a detailed development for the AnA_n case, of our previous article entitled "W-Geometries" to be published in Phys. Lett. It is shown that the AnA_n--W-geometry corresponds to chiral surfaces in CPnCP^n. This is comes out by discussing 1) the extrinsic geometries of chiral surfaces (Frenet-Serret and Gauss-Codazzi equations) 2) the KP coordinates (W-parametrizations) of the target-manifold, and their fermionic (tau-function) description, 3) the intrinsic geometries of the associated chiral surfaces in the Grassmannians, and the associated higher instanton- numbers of W-surfaces. For regular points, the Frenet-Serret equations for CPnCP^n--W-surfaces are shown to give the geometrical meaning of the AnA_n-Toda Lax pair, and of the conformally-reduced WZNW models, and Drinfeld-Sokolov equations. KP coordinates are used to show that W-transformations may be extended as particular diffeomorphisms of the target-space. This leads to higher-dimensional generalizations of the WZNW and DS equations. These are related with the Zakharov- Shabat equations. For singular points, global Pl\"ucker formulae are derived by combining the AnA_n-Toda equations with the Gauss-Bonnet theorem written for each of the associated surfaces.Comment: (60 pages

    High-precision molecular dynamics simulation of UO2-PuO2: superionic transition in uranium dioxide

    Full text link
    Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the rigid ions approximation using high-performance graphics processors (GPU). In this article we assess the 10 most relevant interatomic sets of pair potential (SPP) by reproduction of the Bredig superionic phase transition (anion sublattice premelting) in uranium dioxide. The measurements carried out in a wide temperature range from 300K up to melting point with 1K accuracy allowed reliable detection of this phase transition with each SPP. The {\lambda}-peaks obtained are smoother and wider than it was assumed previously. In addition, for the first time a pressure dependence of the {\lambda}-peak characteristics was measured, in a range from -5 GPa to 5 GPa its amplitudes had parabolic plot and temperatures had linear (that is similar to the Clausius-Clapeyron equation for melting temperature).Comment: 7 pages, 6 figures, 1 tabl
    corecore