3,893 research outputs found

    Cohomology of GKM Fiber Bundles

    Get PDF
    The equivariant cohomology ring of a GKM manifold is isomorphic to the cohomology ring of its GKM graph. In this paper we explore the implications of this fact for equivariant fiber bundles for which the total space and the base space are both GKM and derive a graph theoretical version of the Leray-Hirsch theorem. Then we apply this result to the equivariant cohomology theory of flag varieties.Comment: The paper has been accepted by the Journal of Algebraic Combinatorics. The final publication is available at springerlink.co

    Automorphisms and forms of simple infinite-dimensional linearly compact Lie superalgebras

    Full text link
    We describe the group of continuous automorphisms of all simple infinite-dimensional linearly compact Lie superalgebras and use it in order to classify F-forms of these superalgebras over any field F of characteristic zero.Comment: 24 page

    Quantum ergodicity of C* dynamical systems

    Full text link
    This paper contains a very simple and general proof that eigenfunctions of quantizations of classically ergodic systems become uniformly distributed in phase space. This ergodicity property of eigenfunctions f is shown to follow from a convexity inequality for the invariant states (Af,f). This proof of ergodicity of eigenfunctions simplifies previous proofs (due to A.I. Shnirelman, Colin de Verdiere and the author) and extends the result to the much more general framework of C* dynamical systems.Comment: Only very minor differences with the published versio

    Noncommutative geometry and lower dimensional volumes in Riemannian geometry

    Full text link
    In this paper we explain how to define "lower dimensional'' volumes of any compact Riemannian manifold as the integrals of local Riemannian invariants. For instance we give sense to the area and the length of such a manifold in any dimension. Our reasoning is motivated by an idea of Connes and involves in an essential way noncommutative geometry and the analysis of Dirac operators on spin manifolds. However, the ultimate definitions of the lower dimensional volumes don't involve noncommutative geometry or spin structures at all.Comment: 12 page

    Invariants of pseudogroup actions: Homological methods and Finiteness theorem

    Get PDF
    We study the equivalence problem of submanifolds with respect to a transitive pseudogroup action. The corresponding differential invariants are determined via formal theory and lead to the notions of k-variants and k-covariants, even in the case of non-integrable pseudogroup. Their calculation is based on the cohomological machinery: We introduce a complex for covariants, define their cohomology and prove the finiteness theorem. This implies the well-known Lie-Tresse theorem about differential invariants. We also generalize this theorem to the case of pseudogroup action on differential equations.Comment: v2: some remarks and references addee

    On the geometry of mixed states and the Fisher information tensor

    Full text link
    In this paper, we will review the co-adjoint orbit formulation of finite dimensional quantum mechanics, and in this framework, we will interpret the notion of quantum Fisher information index (and metric). Following previous work of part of the authors, who introduced the definition of Fisher information tensor, we will show how its antisymmetric part is the pullback of the natural Kostant-Kirillov-Souriau symplectic form along some natural diffeomorphism. In order to do this, we will need to understand the symmetric logarithmic derivative as a proper 1-form, settling the issues about its very definition and explicit computation. Moreover, the fibration of co-adjoint orbits, seen as spaces of mixed states, is also discussed.Comment: 27 pages; Accepted Manuscrip

    Instability and Chaos in Non-Linear Wave Interaction: a simple model

    Full text link
    We analyze stability of a system which contains an harmonic oscillator non-linearly coupled to its second harmonic, in the presence of a driving force. It is found that there always exists a critical amplitude of the driving force above which a loss of stability appears. The dependence of the critical input power on the physical parameters is analyzed. For a driving force with higher amplitude chaotic behavior is observed. Generalization to interactions which include higher modes is discussed. Keywords: Non-Linear Waves, Stability, Chaos.Comment: 16 pages, 4 figure

    Low-Energy Nondipole Effects in Molecular Nitrogen Valence-Shell Photoionization

    Get PDF
    Observations are reported for the first time of significant nondipole effects in the photoionization of the outer-valence orbitals of diatomic molecules. Measured nondipole angular-distribution parameters for the 3sigmag, 1piu, and 2sigmau shells of N2 exhibit spectral variations with incident photon energies from thresholds to ~200 eV which are attributed via concomitant calculations to particular final-state symmetry waves arising from (E1)[direct-product](M1,E2) radiation-matter interactions first-order in photon momentum. Comparisons with previously reported K-edge studies in N2 verify linear scaling with photon momentum, accounting in part for the significantly enhanced nondipole behavior observed in inner-shell ionization at correspondingly higher momentum values in this molecule

    Webs of Lagrangian Tori in Projective Symplectic Manifolds

    Full text link
    For a Lagrangian torus A in a simply-connected projective symplectic manifold M, we prove that M has a hypersurface disjoint from a deformation of A. This implies that a Lagrangian torus in a compact hyperk\"ahler manifold is a fiber of an almost holomorphic Lagrangian fibration, giving an affirmative answer to a question of Beauville's. Our proof employs two different tools: the theory of action-angle variables for algebraically completely integrable Hamiltonian systems and Wielandt's theory of subnormal subgroups.Comment: 18 pages, minor latex problem fixe

    Asymptotics of Relativistic Spin Networks

    Get PDF
    The stationary phase technique is used to calculate asymptotic formulae for SO(4) Relativistic Spin Networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the Spin Network evaluation. Finally we discuss the asymptotics of the SO(3,1) 10j-symbol.Comment: 31 pages, latex. v3: minor clarification
    • …
    corecore