56 research outputs found

    Peculiarities of soybean-rhizobial systems subject to different levels of water supply fol-lowing treatment with succinic acid and epibrassinolide

    Get PDF
    All around the world, one of the leading – according to area of cultivated fields – oleic crops is soybean, which has a high demand for moisture. Given the significance of this crop and negative impact of drought on its yield, integrated research of the influence of insufficient water supply on the intensity of physiological-biochemical processes in those plants is necessary for identifying and understanding the drought-tolerance mechanisms of soybean, as well as symbiotic systems created with its participation, and also for search for ways to adapt it to this stressor. Therefore, our objective was determining the specifics of formation and functioning of the symbiotic systems of soybean and Bradyrhizobium japonicum, following treatment with succinic acid (0.01 g/L) and 24-epibrassinolide (0.00001 g/L), subject to different levels of watering. Our studies revealed that pre-sowing treatment of the seeds with a solution of 24-epibrassinolide with their subsequent inoculation with B. japonicum Т21-2 resulted in the most pronounced stimulation of formation and functioning of the symbiotic systems of soybean in the optimal growing conditions. At the same time, during water shortage, the intensity of nitrogen fixation was the highest in the plants grown from seeds that had been successively treated with the acid and the inoculant. We confirmed that water deficit led to significant increase in the overall content of phytohormones of cytokinin nature in the soybean root nodules, depending on the way the seeds were treated. However, the largest pool of cytokinins was seen in the plants that had been treated with succinic acid against the background of both optimal and insufficient water supply. Treatment of the seeds with 24-epibrassinolide caused significant excess of content of zeatin riboside over the content of zeatin during the flowering stage, whereas in the stage of pods formation it led to an opposite effect – excess of zeatin over zeatin riboside. Fourteen days-long water deficit decreased the content of chlorophylls in the leaves and grain productivity of the plants of all variants of the experiment. The use of growth regulators managed to alleviate the negative impact of stress and protect the pigment complex from ruination. Treatment of the seeds with solutions of succinic acid and 24-epibrassinolide provided the growth of soybean grain productivity regardless on water-supply level. The most efficient was 24-epibrassinolide. Therefore, use of 24-epibrassinolide for pre-sowing treatment of the soybean seeds provided formation of effective symbiotic systems with high nitrogen-fixing activity and caused a number of specific changes in the pattern of accumulation of free and complex forms of cytokinins in the root nodules of those plants. At the same time, the treatment provided the highest concentration of photosynthesis pigments in the soybean leaves, and as a result produced the greatest increase in grain productivity of plants of all the variants, regardless of levels of water supply. In turn, use of succinic acid produced the highest level of nitrogen-fixing activity in the case of the lowest number of root nodules in the conditions of insufficient water supply, and also caused significant accumulation of cytokinins in the nodules, compared with other studied variants against the background of both optimal and insufficient water supply. Therefore, it did result in increase in soybean grain productivity, but this was lower than in the plants treated with 24-epibrassinolide

    Hartman effect and spin precession in graphene

    Full text link
    Spin precession has been used to measure the transmission time \tau over a distance L in a graphene sheet. Since conduction electrons in graphene have an energy-independent velocity v, one would expect \tau > L/v. Here we calculate that \tau < L/v at the Dirac point (= charge neutrality point) in a clean graphene sheet, and we interpret this result as a manifestation of the Hartman effect (apparent superluminality) known from optics.Comment: 6 pages, 4 figures; v2: added a section on the case of perpendicularly aligned magnetizations; v3: added a figur

    Quantum Abacus for counting and factorizing numbers

    Full text link
    We generalize the binary quantum counting algorithm of Lesovik, Suslov, and Blatter [Phys. Rev. A 82, 012316 (2010)] to higher counting bases. The algorithm makes use of qubits, qutrits, and qudits to count numbers in a base 2, base 3, or base d representation. In operating the algorithm, the number n < N = d^K is read into a K-qudit register through its interaction with a stream of n particles passing in a nearby wire; this step corresponds to a quantum Fourier transformation from the Hilbert space of particles to the Hilbert space of qudit states. An inverse quantum Fourier transformation provides the number n in the base d representation; the inverse transformation is fully quantum at the level of individual qudits, while a simpler semi-classical version can be used on the level of qudit registers. Combining registers of qubits, qutrits, and qudits, where d is a prime number, with a simpler single-shot measurement allows to find the powers of 2, 3, and other primes d in the number n. We show, that the counting task naturally leads to the shift operation and an algorithm based on the quantum Fourier transformation. We discuss possible implementations of the algorithm using quantum spin-d systems, d-well systems, and their emulation with spin-1/2 or double-well systems. We establish the analogy between our counting algorithm and the phase estimation algorithm and make use of the latter's performance analysis in stabilizing our scheme. Applications embrace a quantum metrological scheme to measure a voltage (analog to digital converter) and a simple procedure to entangle multi-particle states.Comment: 23 pages, 15 figure

    Regulation of superoxide dismutase activity in soybean plants by inoculating seeds with rhizobia containing nanoparticles of metal carboxylates under conditions of different water supply

    Get PDF
    Soybean is one of the most profitable advanced crops in agricultural production in Ukraine and the world as a whole. Therefore, studies of means of regulation and increase in the adaptive capacity of soybeans in symbiosis with nodule bacteria under the action of unfavourable environmental factors are relevant and should be aimed at the use of complex bacterial compositions involving modern nanotechnological approaches. Nanocarboxylates of ferrum, molybdenum and germanium metals were used as components of rhizobia inoculation suspension for soybean seed treatment to study the effectiveness of their complex effect on the regulation of the activity of the key antioxidant enzyme superoxide dismutase in plants under drought. Various symbiotic systems were used, which included soybean plants and inoculation suspensions based on the active, virulent Tn5-mutant Bradyrhizobium japonicum B1-20 by adding nanoparticles of ferrum, germanium and molybdenum carboxylates to the culture medium in a ratio of 1: 1000. Citric acid was the chelator. A model drought lasting 14 days was created during the period of active fixation of atmospheric molecular nitrogen by root nodules of soybeans in the budding and flowering stages, by means of controlled watering of plants to 30% of the total moisture content. In the stage of bean formation, watering of plants was resumed to the optimal level – 60% of the total moisture content. The control was soybean plants, the seeds of which were inoculated with a suspension of rhizobia without the addition of chelated metals. The following research methods were used in the work – microbiological, physiological and biochemical. According to the results, it was found that when nanoparticles of carboxylates of ferrum, molybdenum and germanium were added to the inoculation suspension of rhizobia, there was an increase in superoxide dismutase activity in root nodules and a decrease in soybean leaves under optimal water supply conditions of plants. This indicates the initial changes in the activity of the antioxidant enzyme in these symbiotic systems, induced by the influence of chelated metals in combination with the rhizobia of the active Tn5-mutant B. japonicum B1-20. Prolonged drought induced an increase in the overall level of superoxide dismutase activity in soybean nodules and leaves, compared to plants grown under optimal watering conditions. The symbiotic system formed by soybeans and B. japonicum with molybdenum carboxylate nanoparticles was the most sensitive to long-term drought exposure, compared to two other soybean-rhizobial symbioses using ferrum and germanium nanocarboxylates. This was manifested in the unstable reaction of the enzyme to the action of drought – suppression or intensification of the level of its activity in the root nodules and leaves of soybeans inoculated with rhizobia containing molybdenum carboxylate nanoparticles. In symbiotic systems with the participation of germanium and ferrum nanocarboxylates, slight changes were revealed in superoxide dismutase activity in root nodules and leaves of plants during drought and restoration of enzyme activity to the level of plants with optimal watering after water stress. It is concluded that the addition to the culture medium of rhizobia Tn5-mutant B1-20 of nanocarboxylates of germanium or ferrum is an effective means of regulating the activity of the antioxidant enzyme superoxide dismutase in soybean root nodules and leaves, which can contribute to an increase in the protective properties and adaptation of plants to the action of dehydration

    Composition of pigment complex in leaves of soybean plants, inoculated by Bradyrhizobium japonicum, subject to metal nanocarboxylates and various-levels of water supply

    Get PDF
    A distinctive feature of legumes is the ability to combine two most important processes: photosynthesis and nitrogen fixation. However, the course of those processes, and therefore seed potential of those crops depend on a number of biotic and abiotic factors, the commonest being drought. Therefore, interest in physical-biochemical resistance of the plant organism to abiotic stress factors is increasing, as well as search for optimum ways to increase its adaptability. Success of adaptation of a plant’s organism to unfavourable environmental factors is known to largely depend on optimal functioning of assimilative apparatus. Some indicators of the condition of the apparatus are the content and ratio of photosynthesis pigments. Therefore, we aimed at determining the reaction of the pigment complex of Glycine max (L.) Merr. plants, grown against the background of optimal and insufficient watering, to inoculation of seeds with rhizobia bacteria Bradyrhizobium japonicum, cultivated using nanocarboxylates of chromium, cobalt, iron, copper and germanium. Research has shown that utilization of germanium nanocarboxylate as a component of inoculative suspension led to the highest content of chlorophylls in leaves of soybean of the studied variants in the blossoming phase during optimal watering, as well as significant increase in the content of carotenoids compared with the control plants regardless of the level of watering. At the same time, this element caused no significant effect on the chlorophyll content in plants grown in drought. It was confirmed that among soybean plants that were in stress conditions (blossoming phase) for two weeks, the highest content of chlorophylls was in leaves of plants grown from seeds inoculated with rhizobial suspension with addition of chromium and copper nanocarboxylates, which caused 25.3% and 22.8% increase in chlorophyll а, 29.4% and 32.3% in chlorophyll b and 26.4%% and 23.8% in them respectively, compared with the control. Furthermore, chromium and copper nanocarboxylates stimulated the content of carotenoids in the same plants, though it was less expressed than after adding germanium nanocarboxylate. The highest content of photosynthetic pigments in plants after the watering was resumed (phase of bean formation) was in cases of applying chromium and germanium nanocarboxylates. It was confirmed that the most efficient way to protect the pigment complex of soybean plants during drought was using chromium and germanium nanocarboxylates as components of inoculation suspension. The results we obtained indicate the possibility of applying chromium nanocarboxylate in the technology of cultivating soybean in the conditions of water deficiency as an effective way to improve biosynthesis of chlorophylls, as well as using germanium nanocarboxyllate as a component that provides a high level of activity of protective mechanisms of the pigment system of soybean, associated with resisting stress caused by water deficiency

    Epidemiological pattern of community-acquired respiratory tract infections of the conscripts in the North Fleet during a vaccine-challenged period

    Get PDF
    The formation of the new military units in the North fleet is accompanied by vaccination using Exhausted diphtheria tetanus vaccine, modified. The accination coincides with periods of a rising number of army conscripts being taken ill with community-acquired infection of respiratory tracts: acute tonsillitis, acute bronchitis and community-acquired pneumonia. We need to study is to ascertain whether there is the correlation between the periods of the increase in the number of ervicemen fallen ill with community-acquired infection of respiratory tracts and the diphtheria and tetanus vaccination. The study was carried out on the North fleet conscripts who were drawn blood samples from the ulnar vein before and after the vaccination using Exhausted diphtheria tetanus vaccine, modified. The blood was examined for the presence of antibodies to diphtheria and tetanus using direct hemagglutination test. The health status of the vaccinated conscripts was under observation for 4 months, during which acute illnesses (acute tonsillitis, acute bronchitis and community-acquired pneumonia) were registered. Serologic testing demonstrated a high rate of immunological protection against diphtheria and tetanus before vaccination. After the diphtheria and tetanus vaccination, the number of conscripts, who were taken ill in the first month, was significantly higher compared to the following months. The conscripts, who fell ill, had high antibody titers against diphtheria and tetanus in the vaccine-challenged period. Vaccination of the servicemen using Exhausted diphtheria tetanus vaccine, modified, is serologically unfounded; it leads to complications such as acute tonsillitis, acute bronchitis and community-acquired pneumonia during the vaccinechallenged period especially during the first month and less considerably during the following months

    Quantum divisibility test and its application in mesoscopic physics

    Full text link
    We present a quantum algorithm to transform the cardinality of a set of charged particles flowing along a quantum wire into a binary number. The setup performing this task (for at most N particles) involves log_2 N quantum bits serving as counters and a sequential read out. Applications include a divisibility check to experimentally test the size of a finite train of particles in a quantum wire with a one-shot measurement and a scheme allowing to entangle multi-particle wave functions and generating Bell states, Greenberger-Horne-Zeilinger states, or Dicke states in a Mach-Zehnder interferometer.Comment: 9 pages, 5 figure

    КОСИНУС-ДРОБИ ЧЕБЫШЕВА МАРКОВА В ПРИБЛИЖЕННОМ ИНТЕГРИРОВАНИИ

    Get PDF
    Gauss-type quadrature formulas for rational functions with simple poles have been investigated.Построены квадратурные формулы типа Гаусса на отрезке с чебышевским весом, точные на рациональных функциях с заданным набором простых полюсов

    Limitations on the principle of stationary phase when it is applied to tunneling analysis

    Get PDF
    Using a recently developed procedure - multiple wave packet decomposition - here we study the phase time formulation for tunneling/reflecting particles colliding with a potential barrier. To partially overcome the analytical difficulties which frequently arise when the stationary phase method is employed for deriving phase (tunneling) time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and an one-dimensional rectangular potential barrier. Summing the amplitudes of the reflected and transmitted waves - using a method we call multiple peak decomposition - is shown to allow reconstruction of the scattered wave packets in a way which allows the stationary phase principle to be recovered.Comment: 17 pages, 2 figure

    Traversal time for electron tunneling in water

    Full text link
    The traversal time for tunneling is a measure of the time during which the transmitted particle can be affected by interactions localized in the barrier. The Buttiker-Landauer approach, which estimates this time by imposing an internal clock on the system, has been applied so far for relatively simple 1-dimensional models. Here we apply this approach to estimate the traversal time for electron tunneling through a realistic 3-dimensional model of a water layer. Observed structure in the energy dependence of times computed reflects the existence of transient tunneling resonances associated with instantaneous water structures.Comment: 9 pages, 3 figures. Submitted to the Journal of Chemical Physic
    corecore