197 research outputs found

    Biomechanical Characterization of Endothelial Cells Exposed to Shear Stress Using Acoustic Force Spectroscopy.

    Full text link
    Characterizing mechanical properties of cells is important for understanding many cellular processes, such as cell movement, shape, and growth, as well as adaptation to changing environments. In this study, we explore the mechanical properties of endothelial cells that form the biological barrier lining blood vessels, whose dysfunction leads to development of many cardiovascular disorders. Stiffness of living endothelial cells was determined by Acoustic Force Spectroscopy (AFS), by pull parallel multiple functionalized microspheres located at the cell-cell periphery. The unique configuration of the acoustic microfluidic channel allowed us to develop a long-term dynamic culture protocol exposing cells to laminar flow for up to 48 h, with shear stresses in the physiological range (i.e., 6 dyn/cm2). Two different Endothelial cells lines, Human Aortic Endothelial Cells (HAECs) and Human Umbilical Vein Endothelial Cells (HUVECs), were investigated to show the potential of this tool to capture the change in cellular mechanical properties during maturation of a confluent endothelial monolayer. Immunofluorescence microscopy was exploited to follow actin filament rearrangement and junction formation over time. For both cell types we found that the application of shear-stress promotes the typical phenotype of a mature endothelium expressing a linear pattern of VE-cadherin at the cell-cell border and actin filament rearrangement along the perimeter of Endothelial cells. A staircase-like sequence of increasing force steps, ranging from 186 pN to 3.5 nN, was then applied in a single measurement revealing the force-dependent apparent stiffness of the membrane cortex in the kPa range. We also found that beads attached to cells cultured under dynamic conditions were harder to displace than cells cultured under static conditions, showing a stiffer membrane cortex at cell periphery. All together these results demonstrate that the AFS can identify changes in cell mechanics based on force measurements of adherent cells under conditions mimicking their native microenvironment, thus revealing the shear stress dependence of the mechanical properties of neighboring endothelial cells

    Post-sigh sleep apneas in mice: Systematic review and data-driven definition

    Get PDF
    Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake\u2013sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively

    New experimental diagnostics in combustion of forest fuels: microscale appreciation for a macroscale approach

    Get PDF
    In modelling the wildfire behaviour, good knowledge of the mechanisms and the kinetic parameters controlling the thermal decomposition of forest fuel is of great importance. The kinetic modelling is based on the mass-loss rate, which defines the mass-source term of combustible gases that supply the flames and influences the propagation of wildland fires. In this work, we investigated the thermal degradation of three different fuels using a multi-scale approach.Lab-scale experimental diagnostics such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), use of the cone calorimeter (CC) or Fire Propagation Apparatus (FPA) led to valuable results for modelling the thermal degradation of vegetal fuels and allowed several upgrades of pyrolysis models.However, this work remains beyond large-scale conditions of a wildland or forest fire. In an effort to elaborate on the kinetic models under realistic natural fire conditions, a mass-loss device specifically designed for the field scale has been developed. The paper presents primary results gained using this new device, during large-scale experiments of controlled fires. The mass-loss records obtained on a field scale highlight the influence of the chemical composition and the structure of plants. Indeed, two species with similar chemical and morphological characteristics exhibit similar mass-loss rates, whereas the third presents different thermal behaviour.The experimental data collected at a field scale led to a new insight about thermal degradation processes of natural fuel when compared to the kinetic laws established in TGA. These new results provide a global description of the kinetics of degradation of Mediterranean forest fuels. The results led to a proposed thermal degradation mechanism that has also been validated on a larger scale.</p

    Early-life nicotine or cotinine exposure produces long-lasting sleep alterations and downregulation of hippocampal corticosteroid receptors in adult mice

    Get PDF
    Early-life exposure to environmental toxins like tobacco can permanently re-program body structure and function. Here, we investigated the long-term effects on mouse adult sleep phenotype exerted by early-life exposure to nicotine or to its principal metabolite, cotinine. Moreover, we investigated whether these effects occurred together with a reprogramming of the activity of the hippocampus, a key structure to coordinate the hormonal stress response. Adult male mice born from dams subjected to nicotine (NIC), cotinine (COT) or vehicle (CTRL) treatment in drinking water were implanted with electrodes for sleep recordings. NIC and COT mice spent significantly more time awake than CTRL mice at the transition between the rest (light) and the activity (dark) period. NIC and COT mice showed hippocampal glucocorticoid receptor (GR) downregulation compared to CTRL mice, and NIC mice also showed hippocampal mineralocorticoid receptor downregulation. Hippocampal GR expression significantly and inversely correlated with the amount of wakefulness at the light-to-dark transition, while no changes in DNA methylation were found. We demonstrated that early-life exposure to nicotine (and cotinine) concomitantly entails long-lasting reprogramming of hippocampal activity and sleep phenotype suggesting that the adult sleep phenotype may be modulated by events that occurred during that critical period of life

    Obstructive sleep apneas naturally occur in mice during REM sleep and are highly prevalent in a mouse model of Down syndrome

    Get PDF
    Study objectives: The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. Methods: In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. Results: OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. Conclusions: Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies

    Consensus guidelines on the construct validity of rodent models of restless legs syndrome.

    Get PDF
    Our understanding of the causes and natural course of restless legs syndrome (RLS) is incomplete. The lack of objective diagnostic biomarkers remains a challenge for clinical research and for the development of valid animal models. As a task force of preclinical and clinical scientists, we have previously defined face validity parameters for rodent models of RLS. In this article, we establish new guidelines for the construct validity of RLS rodent models. To do so, we first determined and agreed on the risk, and triggering factors and pathophysiological mechanisms that influence RLS expressivity. We then selected 20 items considered to have sufficient support in the literature, which we grouped by sex and genetic factors, iron-related mechanisms, electrophysiological mechanisms, dopaminergic mechanisms, exposure to medications active in the central nervous system, and others. These factors and biological mechanisms were then translated into rodent bioequivalents deemed to be most appropriate for a rodent model of RLS. We also identified parameters by which to assess and quantify these bioequivalents. Investigating these factors, both individually and in combination, will help to identify their specific roles in the expression of rodent RLS-like phenotypes, which should provide significant translational implications for the diagnosis and treatment of RLS

    Impact of gastrointestinal side effects on patients’ reported quality of life trajectories after radiotherapy for prostate cancer: Data from the prospective, observational pros-it CNR study

    Get PDF
    Radiotherapy (RT) represents an important therapeutic option for the treatment of localized prostate cancer. The aim of the current study is to examine trajectories in patients’ reported quality of life (QoL) aspects related to bowel function and bother, considering data from the PROState cancer monitoring in ITaly from the National Research Council (Pros-IT CNR) study, analyzed with growth mixture models. Data for patients who underwent RT, either associated or not associated with androgen deprivation therapy, were considered. QoL outcomes were assessed over a 2-year period from the diagnosis, using the Italian version of the University of California Los Angeles-Prostate Cancer Index (Italian-UCLA-PCI). Three trajectories were identified for the bowel function; having three or more comorbidities and the use of 3D-CRT technique for RT were associated with the worst trajectory (OR = 3.80, 95% CI 2.04–7.08; OR = 2.17, 95% CI 1.22–3.87, respectively). Two trajectories were identified for the bowel bother scores; diabetes and the non-Image guided RT method were associated with being in the worst bowel bother trajectory group (OR = 1.69, 95% CI 1.06–2.67; OR = 2.57, 95% CI 1.70–3.86, respectively). The findings from this study suggest that the absence of comorbidities and the use of intensity modulated RT techniques with image guidance are related with a better tolerance to RT in terms of bowel side effects

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF
    Background: The National Research Council (CNR) prostate cancer monitoring project in Italy (Pros-IT CNR) is an observational, prospective, ongoing, multicentre study aiming to monitor a sample of Italian males diagnosed as new cases of prostate cancer. The present study aims to present data on the quality of life at time prostate cancer is diagnosed. Methods: One thousand seven hundred five patients were enrolled. Quality of life is evaluated at the time cancer was diagnosed and at subsequent assessments via the Italian version of the University of California Los Angeles-Prostate Cancer Index (UCLA-PCI) and the Short Form Health Survey (SF-12). Results: At diagnosis, lower scores on the physical component of the SF-12 were associated to older ages, obesity and the presence of 3+ moderate/severe comorbidities. Lower scores on the mental component were associated to younger ages, the presence of 3+ moderate/severe comorbidities and a T-score higher than one. Urinary and bowel functions according to UCLA-PCI were generally good. Almost 5% of the sample reported using at least one safety pad daily to control urinary loss; less than 3% reported moderate/severe problems attributable to bowel functions, and sexual function was a moderate/severe problem for 26.7%. Diabetes, 3+ moderate/severe comorbidities, T2 or T3-T4 categories and a Gleason score of eight or more were significantly associated with lower sexual function scores at diagnosis. Conclusions: Data collected by the Pros-IT CNR study have clarified the baseline status of newly diagnosed prostate cancer patients. A comprehensive assessment of quality of life will allow to objectively evaluate outcomes of different profile of care

    Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates

    Get PDF
    Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources. This chapter highlights how science has contributed with data from the last 5 years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios
    • …
    corecore