189 research outputs found

    Mitochondrial dysfunction in peripheral blood mononuclear cells in pediatric septic shock

    Get PDF
    OBJECTIVES: Mitochondrial dysfunction in peripheral blood mononuclear cells has been linked to immune dysregulation and organ failure in adult sepsis, but pediatric data are limited. We hypothesized that pediatric septic shock patients exhibit mitochondrial dysfunction within peripheral blood mononuclear cells which in turn correlates with global organ injury. DESIGN: Prospective observational study. SETTING: Academic PICU. PATIENTS: Thirteen pediatric patients with septic shock and greater than or equal to two organ failures and 11 PICU controls without sepsis or organ failure. INTERVENTIONS: Ex vivo measurements of mitochondrial oxygen consumption and membrane potential (DeltaPsim) were performed in intact peripheral blood mononuclear cells on day 1-2 and day 5-7 of septic illness and in controls. The Pediatric Logistic Organ Dysfunction score, inotrope score, and organ failure-free days were determined from medical records. MEASUREMENTS AND MAIN RESULTS: Spare respiratory capacity, an index of bioenergetic reserve, was lower in septic peripheral blood mononuclear cells on day 1-2 (median, 1.81; interquartile range, 0.52-2.09 pmol O2/s/10 cells) compared with controls (5.55; 2.80-7.21; p = 0.03). Spare respiratory capacity normalized by day 5-7. Patients with sepsis on day 1-2 exhibited a higher ratio of LEAK to maximal respiration than controls (17% vs \u3c 1%; p = 0.047) with normalization by day 5-7 (1%; p = 0.008), suggesting mitochondrial uncoupling early in sepsis. However, septic peripheral blood mononuclear cells exhibited no differences in basal or adenosine triphosphate-linked oxygen consumption or DeltaPsim. Oxygen consumption did not correlate with Pediatric Logistic Organ Dysfunction score, inotrope score, or organ failure-free days (all p \u3e 0.05). Although there was a weak overall association between DeltaPsim on day 1-2 and organ failure-free days (Spearman rho = 0.56, p = 0.06), patients with sepsis with normal organ function by day 7 exhibited higher DeltaPsim on day 1-2 compared with patients with organ failure for more than 7 days (p = 0.04). CONCLUSIONS: Mitochondrial dysfunction was present in peripheral blood mononuclear cells in pediatric sepsis, evidenced by decreased bioenergetic reserve and increased uncoupling. Mitochondrial membrane potential, but not respiration, was associated with duration of organ injury

    Inborn and acquired metabolic defects in cancer

    Get PDF
    The observation that altered metabolism is the fundamental cause of cancer was made by Otto Warburg nearly a century ago. However, the subsequent identification of oncogenes and tumor suppressor genes has displaced Warburg's theory pointing towards genetic aberrations as the underlining cause of cancer. Nevertheless, in the last decade, cancer-associated mutations have been identified in genes coding for tricarboxylic acid cycle (TCA cycle, also known as Krebs cycle) and closely related enzymes that have essential roles in cellular metabolism. These observations have revived interest in Warburg's hypothesis and prompted a flurry of functional studies in the hope of gaining mechanistic insight into the links between mitochondrial dysfunction, metabolic alterations, and cancer. In this review, we discuss the potential pro-oncogenic signaling role of some TCA cycle metabolites and their derivatives (oncometabolites). In particular, we focus on their effects on dioxygenases, a family of oxygen and α-ketoglutarate-dependent enzymes that control, among other things, the levels and activity of the hypoxia-inducible transcription factors and the activity of DNA and histone demethylases

    Central carbon metabolism in the progression of mammary carcinoma

    Get PDF
    There is a growing belief that the metabolic program of breast tumor cells could be a therapeutic target. Yet, without detailed information on central carbon metabolism in breast tumors it is impossible to know which metabolic pathways to target, and how their inhibition might influence different stages of breast tumor progression. Here we perform the first comprehensive profiling of central metabolism in the MCF10 model of mammary carcinoma, where the steps of breast tumor progression (transformation, tumorigenicity and metastasis) can all be examined in the context of the same genetic background. The metabolism of [U-13C]-glucose by a series of progressively more aggressive MCF10 cell lines was tracked by 2D NMR and mass spectrometry. From this analysis the flux of carbon through distinct metabolic reactions was quantified by isotopomer modeling. The results indicate widespread changes to central metabolism upon cellular transformation including increased carbon flux through the pentose phosphate pathway (PPP), the TCA cycle, as well as increased synthesis of glutamate, glutathione and fatty acids (including elongation and desaturation). The de novo synthesis of glycine increased upon transformation as well as at each subsequent step of breast tumor cell progression. Interestingly, the major metabolic shift in metastatic cells is a large increase in the de novo synthesis of proline. This work provides the first comprehensive view of changes to central metabolism as a result of breast tumor progression

    Lentivirus-meditated frataxin gene delivery reverses genome instability in Friedreich ataxia patient and mouse model fibroblasts

    Get PDF
    Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by deficiency of frataxin protein, with the primary sites of pathology being the large sensory neurons of the dorsal root ganglia and the cerebellum. FRDA is also often accompanied by severe cardiomyopathy and diabetes mellitus. Frataxin is important in mitochondrial iron–sulfur cluster (ISC) biogenesis and low-frataxin expression is due to a GAA repeat expansion in intron 1 of the FXN gene. FRDA cells are genomically unstable, with increased levels of reactive oxygen species and sensitivity to oxidative stress. Here we report the identification of elevated levels of DNA double strand breaks (DSBs) in FRDA patient and YG8sR FRDA mouse model fibroblasts compared to normal fibroblasts. Using lentivirus FXN gene delivery to FRDA patient and YG8sR cells, we obtained long-term overexpression of FXN mRNA and frataxin protein levels with reduced DSB levels towards normal. Furthermore, γ-irradiation of FRDA patient and YG8sR cells revealed impaired DSB repair that was recovered on FXN gene transfer. This suggests that frataxin may be involved in DSB repair, either directly by an unknown mechanism, or indirectly via ISC biogenesis for DNA repair enzymes, which may be essential for the prevention of neurodegeneration.Ataxia UK, FARA Australasia and FARA US

    SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production

    Get PDF
    It has become increasing clear that alterations in cellular metabolism have a key role in the generation and maintenance of cancer. Some of the metabolic changes can be attributed to the activation of oncogenes or loss of tumor suppressors. Here, we show that the mitochondrial sirtuin, SirT3, acts as a tumor suppressor via its ability to suppress reactive oxygen species (ROS) and regulate hypoxia inducible factor 1α (HIF-1α). Primary mouse embryo fibroblasts (MEFs) or tumor cell lines expressing SirT3 short-hairpin RNA exhibit a greater potential to proliferate, and augmented HIF-1α protein stabilization and transcriptional activity in hypoxic conditions. SirT3 knockdown increases tumorigenesis in xenograft models, and this is abolished by giving mice the anti-oxidant N-acetyl cysteine. Moreover, overexpression of SirT3 inhibits stabilization of HIF-1α protein in hypoxia and attenuates increases in HIF-1α transcriptional activity. Critically, overexpression of SirT3 decreases tumorigenesis in xenografts, even when induction of the sirtuin occurs after tumor initiation. These data suggest that SirT3 acts to suppress the growth of tumors, at least in part through its ability to suppress ROS and HIF-1α

    Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease

    Get PDF
    Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment
    corecore