537 research outputs found
Arc Magmas from Slab to Eruption: The Case of Kliuchevskoy Volcano
Arc magmas are generated by a number of mantle and
crustal processes. Our multidisciplinary, long-term research is
aimed at deciphering these processes for a single arc volcano,
Kliuchevskoy volcano in Kamchatka. Some key results of the
study follow:
1) Modeling of trace element and H2O contents in melt
inclusions suggests that the primary magmas originate via
hydrous flux-melting of the mantle wedge at temperatures
close to the dry peridotite solidus. The role of decompression
melting is minor or absent at Kliuchevskoy and other arc
volcanoes built on relatively thick crust.
2) Geochemistry of high-Mg olivine suggests that primary
Kliuchevskoy magmas have substantial contribution from
olivine-free pyroxenite (up to 30 %), which could be formed
by reaction of slab melts (or supercritical fluids) with mantle
wedge peridotite.
3) Parental Kliuchevskoy melts start to crystallize as deep
as the Moho boundary, and the erupted magmas reflect multistage
and complex processes of crystallization, magma mixing
and crustal assimilation. None of the Kliuchevskoy rocks
analyzed thus far represent true primary melt compositions.
4) The Kliuchevskoy Holocene eruptive history is not
steady-state in terms of eruption rate and geochemistry. There
are two millenial cycles with major and trace element and OSr-
Nd-Pb and U-series isotope compositions of the magmas
changing gradually from more to less affected by crustal (?)
assimilation. The onset of the cycles correlates with periods of
enhanced volcanic activity in Kamchatka, suggesting that the
extent of magma-crust interaction is inversely related to
magma production rate and thus magma flux from the mantle
Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts
We show that G\"odel's negative results concerning arithmetic, which date
back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites
paradox") pose the questions of the use of fuzzy sets and of the effect of a
measuring device on the experiment. The consideration of these facts led, in
thermodynamics, to a new one-parameter family of ideal gases. In turn, this
leads to a new approach to probability theory (including the new notion of
independent events). As applied to economics, this gives the correction, based
on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us
to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are
added. arXiv admin note: significant text overlap with arXiv:1111.610
Determination of electromagnetic medium from the Fresnel surface
We study Maxwell's equations on a 4-manifold where the electromagnetic medium
is described by an antisymmetric -tensor . In this setting,
the Tamm-Rubilar tensor density determines a polynomial surface of fourth order
in each cotangent space. This surface is called the Fresnel surface and acts as
a generalisation of the light-cone determined by a Lorentz metric; the Fresnel
surface parameterises electromagnetic wave-speed as a function of direction.
Favaro and Bergamin have recently proven that if has only a principal
part and if the Fresnel surface of coincides with the light cone for a
Lorentz metric , then is proportional to the Hodge star operator of
. That is, under additional assumptions, the Fresnel surface of
determines the conformal class of . The purpose of this paper is
twofold. First, we provide a new proof of this result using Gr\"obner bases.
Second, we describe a number of cases where the Fresnel surface does not
determine the conformal class of the original -tensor . For
example, if is invertible we show that and have
the same Fresnel surfaces.Comment: 23 pages, 1 figur
Stationary Flows of the Parabolic Potential Barrier in Two Dimensions
In the two-dimensional isotropic parabolic potential barrier , though it is a model of an unstable system in quantum
mechanics, we can obtain the stationary states corresponding to the real energy
eigenvalue . Further, they are infinitely degenerate. For the first few
eigenstates, we will find the stationary flows round a right angle that are
expressed by the complex velocity potentials .Comment: 12 pages, AmS-LaTeX, 4 figure
Stellar evolution and modelling stars
In this chapter I give an overall description of the structure and evolution
of stars of different masses, and review the main ingredients included in
state-of-the-art calculations aiming at reproducing observational features. I
give particular emphasis to processes where large uncertainties still exist as
they have strong impact on stellar properties derived from large compilations
of tracks and isochrones, and are therefore of fundamental importance in many
fields of astrophysics.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Wave propagation in linear electrodynamics
The Fresnel equation governing the propagation of electromagnetic waves for
the most general linear constitutive law is derived. The wave normals are found
to lie, in general, on a fourth order surface. When the constitutive
coefficients satisfy the so-called reciprocity or closure relation, one can
define a duality operator on the space of the two-forms. We prove that the
closure relation is a sufficient condition for the reduction of the fourth
order surface to the familiar second order light cone structure. We finally
study whether this condition is also necessary.Comment: 13 pages. Phys. Rev. D, to appea
First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland
High-temperature (250°C) hydrothermal vents and massive anhydrite deposits have been found in a shallow water, sediment-filled graben near 66°36′N in the Tjornes Fracture Zone north of Iceland. The site is located about 30 km offshore, near the small island of Grimsey. The main vent field occurs at a depth of 400 m and consists of about 20 large-diameter (up to 10 m) mounds and 1–3 m chimneys and spires of anhydrite and talc. A north–south alignment of the mounds over a 1-km strike length of the valley floor suggests that their distribution is controlled by a buried fault. Widespread shimmering water and extensive white patches of anhydrite in the sediment between the mounds indicates that the entire 1-km2 area occupied by the vents is thermally active. A 2-man research submersible JAGO was used to map the area and to sample vent waters, gases, and chimneys. Actively boiling hydrothermal vents occur on most of the mounds, and extensive two-phase venting indicates that the field is underlain by a large boiling zone (200×300 m). The presence of boiling fluids in shallow aquifers beneath the deposits was confirmed by sediment coring. The highest-temperature pore fluids were encountered in talc- and anhydrite-rich sedimentary layers that occur up to 7 m below the mounds. Baked muds underlie the talc and anhydrite layers, and pyrite is common in stockwork-like fractures and veins in the hydrothermally altered sediments. However, massive sulfides (pyrite–marcasite crusts) were found in only one relict mound. Subseafloor boiling has likely affected the metal-carrying capacity of the hydrothermal fluids, and deposition of sulfides may be occurring at greater depth. Although the mounds and chimneys at Grimsey resemble other deposits at sedimented ridges (e.g. Middle Valley, Escanaba Trough, Guaymas Basin), the shallow water setting and extensive boiling of the hydrothermal fluids represent a distinctive new type of seafloor hydrothermal system
How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?
The coupling of the electromagnetic field to gravity is an age-old problem.
Presently, there is a resurgence of interest in it, mainly for two reasons: (i)
Experimental investigations are under way with ever increasing precision, be it
in the laboratory or by observing outer space. (ii) One desires to test out
alternatives to Einstein's gravitational theory, in particular those of a
gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity.
A clean discussion requires a reflection on the foundations of electrodynamics.
If one bases electrodynamics on the conservation laws of electric charge and
magnetic flux, one finds Maxwell's equations expressed in terms of the
excitation H=(D,H) and the field strength F=(E,B) without any intervention of
the metric or the linear connection of spacetime. In other words, there is
still no coupling to gravity. Only the constitutive law H= functional(F)
mediates such a coupling. We discuss the different ways of how metric,
nonmetricity, torsion, and curvature can come into play here. Along the way, we
touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld,
Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni),
and find a method for deriving the metric from linear electrodynamics (Toupin,
Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in
Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th
Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al.
(eds.). Springer, Berlin (2000) to be published (Revised version uses
Springer Latex macros; Sec. 6 substantially rewritten; appendices removed;
the list of references updated
New Insights into the mineralogy of the Atlantis II deep metalliferous sediments, Red Sea
The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main “ore” minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au
- …
