1,914 research outputs found
Vortex lattice stability and phase coherence in three-dimensional rapidly rotating Bose condensates
We establish the general equations of motion for the modes of a vortex
lattice in a rapidly rotating Bose-Einstein condensate in three dimensions,
taking into account the elastic energy of the lattice and the vortex line
bending energy. As in two dimensions, the vortex lattice supports Tkachenko and
gapped sound modes. In contrast, in three dimensions the Tkachenko mode
frequency at long wavelengths becomes linear in the wavevector for any
propagation direction out of the transverse plane. We compute the correlation
functions of the vortex displacements and the superfluid order parameter for a
homogeneous Bose gas of bounded extent in the axial direction. At zero
temperature the vortex displacement correlations are convergent at large
separation, but at finite temperatures, they grow with separation. The growth
of the vortex displacements should lead to observable melting of vortex
lattices at higher temperatures and somewhat lower particle number and faster
rotation than in current experiments. At zero temperature a system of large
extent in the axial direction maintains long range order-parameter correlations
for large separation, but at finite temperatures the correlations decay with
separation.Comment: 10 pages, 2 figures, Changes include the addition of the particle
density - vortex density coupling and the correct value of the shear modulu
Dislocation-Mediated Melting in Superfluid Vortex Lattices
We describe thermal melting of the two-dimensional vortex lattice in a
rotating superfluid by generalizing the Halperin and Nelson theory of
dislocation-mediated melting. and derive a melting temperature proportional to
the renormalized shear modulus of the vortex lattice. The rigid-body rotation
of the superfluid attenuates the effects of lattice compression on the energy
of dislocations and hence the melting temperature, while not affecting the
shearing. Finally, we discuss dislocations and thermal melting in inhomogeneous
rapidly rotating Bose-Einstein condensates; we delineate a phase diagram in the
temperature -- rotation rate plane, and infer that the thermal melting
temperature should lie below the Bose-Einstein transition temperature.Comment: 9 pages, 2 figure
Pinning and collective modes of a vortex lattice in a Bose-Einstein condensate
We consider the ground state of vortices in a rotating Bose-Einstein
condensate that is loaded in a corotating two-dimensional optical lattice. Due
to the competition between vortex interactions and their potential energy, the
vortices arrange themselves in various patterns, depending on the strength of
the optical potential and the vortex density. We outline a method to determine
the phase diagram for arbitrary vortex filling factor. Using this method, we
discuss several filling factors explicitly. For increasing strength of the
optical lattice, the system exhibits a transition from the unpinned hexagonal
lattice to a lattice structure where all the vortices are pinned by the optical
lattice. The geometry of this fully pinned vortex lattice depends on the
filling factor and is either square or triangular. For some filling factors
there is an intermediate half-pinned phase where only half of the vortices is
pinned. We also consider the case of a two-component Bose-Einstein condensate,
where the possible coexistence of the above-mentioned phases further enriches
the phase diagram. In addition, we calculate the dispersion of the low-lying
collective modes of the vortex lattice and find that, depending on the
structure of the ground state, they can be gapped or gapless. Moreover, in the
half-pinned and fully pinned phases, the collective mode dispersion is
anisotropic. Possible experiments to probe the collective mode spectrum, and in
particular the gap, are suggested.Comment: 29 pages, 4 figures, changes in section
Influence of equation of state on interpretation of electrical conductivity measurements in strongly coupled tungsten plasma
We study the influence of equation-of-state (EOS) model on the interpretation
of electrical conductivity measurements in strongly coupled plasma of tungsten
by Korobenko et al. (2002 Plasma Physics Reports 28(12) 1008--1016). Three
different semiempirical EOS models for tungsten are used. Discrepancies in
obtained thermodynamic parameters and specific resistivity values as compared
with calculation results of Korobenko et al. are analysed.Comment: 11 pages, 5 Postscript figures, accepted for publication in J. Phys.
A: Math. Ge
- …