53 research outputs found

    An off-shell I.R. regularization strategy in the analysis of collinear divergences

    Full text link
    We present a method for the analysis of singularities of Feynman amplitudes based on the Speer sector decomposition of the Schwinger parametric integrals combined with the Mellin-Barnes transform. The sector decomposition method is described in some details. We suggest the idea of applying the method to the analysis of collinear singularities in inclusive QCD cross sections in the mass-less limit regularizing the forward amplitudes by an off-shell choice of the initial particle momenta. It is shown how the suggested strategy works in the well known case of the one loop corrections to Deep Inelastic Scattering.Comment: 25 pages, 3 figure

    Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations

    Full text link
    By reevaluating a 13-month stretch of Ulysses SWICS H pickup ion measurements near 5 AU close to the ecliptic right after the previous solar minimum, this paper presents a determination of the neutral interstellar H density at the solar wind termination shock and implications for the density and ionization degree of hydrogen in the LIC. The density of neutral interstellar hydrogen at the termination shock was determined from the local pickup ion production rate as obtained close to the cut-off in the distribution function at aphelion of Ulysses. As shown in an analytical treatment for the upwind axis and through kinetic modeling of the pickup ion production rate at the observer location, with variations in the ionization rate, radiation pressure, and the modeling of the particle behavior, this analysis turns out to be very robust against uncertainties in these parameters and the modeling. Analysis using current heliospheric parameters yields the H density at the termination shock equal to 0.087±0.0220.087\pm0.022 cm−3^{-3}, including observational and modeling uncertainties.Comment: Re-edited version, density revised downward due to data re-processing, accepted by A&

    Modelling light-cone distribution amplitudes from non-relativistic bound states

    Full text link
    We calculate light-cone distribution amplitudes for non-relativistic bound states, including radiative corrections from relativistic gluon exchange to first order in the strong coupling constant. We distinguish between bound states of quarks with equal (or similar) mass, m_1 ~ m_2, and between bound states where the quark masses are hierarchical, m_1 >> m_2. For both cases we calculate the distribution amplitudes at the non-relativistic scale and discuss the renormalization-group evolution for the leading-twist and 2-particle distributions. Our results apply to hard exclusive reactions with non-relativistic bound states in the QCD factorization approach like, for instance, (B_c -> eta_c l nu) or (e^+ e^- -> J/psi eta_c). They also serve as a toy model for light-cone distribution amplitudes of light mesons or heavy B and D mesons, for which certain model-independent properties can be derived. In particular, we calculate the anomalous dimension for the B meson distribution amplitude phi_B^-(w) in the Wandzura-Wilczek approximation and derive the according solution of the evolution equation at leading logarithmic accuracy.Comment: 27 pages, 15 figures, discussion around Eq.(83,84) extende

    A transonic collisionless model of the solar wind

    Full text link
    Because of the semi-collisional nature of the solar wind, the collisionless or exospheric approach as well as the hydrodynamic one are both inaccurate. However, the advantage of simplicity makes them useful for enlightening some basic mechanisms of solar wind acceleration. Previous exospheric models have been able to reproduce winds that were already nearly supersonic at the exobase, the altitude above which there are no collisions. In order to allow transonic solutions, a lower exobase has to be considered, in which case the protons are experiencing a non-monotonic potential energy profile. This is done in the present work. In this model, the electron velocity distribution in the corona is assumed non-thermal. Parametric results are presented and show that the high acceleration obtained does not depend on the details of the non-thermal distributions. This acceleration seems, therefore, to be a robust result produced by the presence of a sufficient number of suprathermal electrons. A method for improving the exospheric description is also given, which consists in mapping particle orbits in terms of their invariants of motion.Comment: 18 pages, 18 figures, accepted for publication in The Astrophysical Journal (1 May 2004

    Dust Processing in Disks around T Tauri Stars

    Get PDF
    The 8-14 micron emission spectra of 12 T Tauri stars in the Taurus/Auriga dark clouds and in the TW Hydrae association obtained with the Infrared Spectrograph (IRS; The IRS is a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the Jet Propulsion Laboratory and the Ames Research Center.) on board Spitzer are analyzed. Assuming the 10 micron features originate from silicate grains in the optically thin surface layers of T Tauri disks, the 8-14 micron dust emissivity for each object is derived from its Spitzer spectrum. The emissivities are fit with the opacities of laboratory analogs of cosmic dust. The fits include small nonspherical grains of amorphous silicates (pyroxene and olivine), crystalline silicates (forsterite and pyroxene), and quartz, together with large fluffy amorphous silicate grains. A wide range in the fraction of crystalline silicate grains as well as large silicate grains among these stars are found. The dust in the transitional-disk objects CoKu Tau/4, GM Aur, and DM Tau has the simplest form of silicates, with almost no hint of crystalline components and modest amounts of large grains. This indicates that the dust grains in these objects have been modified little from their origin in the interstellar medium. Other stars show various amounts of crystalline silicates, similar to the wide dispersion of the degree of crystallinity reported for Herbig Ae/Be stars of mass <2.5 solar masses. Late spectral type, low-mass stars can have significant fractions of crystalline silicate grains. Higher quartz mass fractions often accompany low amorphous olivine-to-amorphous pyroxene ratios. It is also found that lower contrast of the 10 micron feature accompanies greater crystallinity.Comment: AASTEX, 39 pages text, 14 figures, 4 tables, scheduled to be published July 2006 in the Astrophysical Journa

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe

    The Earth: Plasma Sources, Losses, and Transport Processes

    Get PDF
    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed

    Alfvenic velocity spikes and rotational flows in the near-Sun solar wind

    Get PDF
    The prediction of a supersonic solar wind1 was first confirmed by spacecraft near Earth2,3 and later by spacecraft at heliocentric distances as small as 62 solar radii4. These missions showed that plasma accelerates as it emerges from the corona, aided by unidentified processes that transport energy outwards from the Sun before depositing it in the wind. AlfvĂ©nic fluctuations are a promising candidate for such a process because they are seen in the corona and solar wind and contain considerable energy5,6,7. Magnetic tension forces the corona to co-rotate with the Sun, but any residual rotation far from the Sun reported until now has been much smaller than the amplitude of waves and deflections from interacting wind streams8. Here we report observations of solar-wind plasma at heliocentric distances of about 35 solar radii9,10,11, well within the distance at which stream interactions become important. We find that AlfvĂ©n waves organize into structured velocity spikes with duration of up to minutes, which are associated with propagating S-like bends in the magnetic-field lines. We detect an increasing rotational component to the flow velocity of the solar wind around the Sun, peaking at 35 to 50 kilometres per second—considerably above the amplitude of the waves. These flows exceed classical velocity predictions of a few kilometres per second, challenging models of circulation in the corona and calling into question our understanding of how stars lose angular momentum and spin down as they age12,13,14

    STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview

    Full text link
    • 

    corecore