3,043 research outputs found

    Quantitative determination of engine water ingestion

    Get PDF
    A nonintrusive optical technique is described for determination of liquid mass flux in a droplet laden airstream. The techniques were developed for quantitative determination of engine water ingestion resulting from heavy rain or wheel spray. Independent measurements of the liquid water content (LWC) of the droplet laden airstream and of the droplet velocities were made at the stimulated nacelle inlet plane for the liquid mass flux determination. The LWC was measured by illuminating and photographing the droplets contained within a thin slice of the flow field by means of a sheet of light from a pulsed laser. A fluorescent dye introduced in the water enchanced the droplet image definition. The droplet velocities were determined from double exposed photographs of the moving droplet field. The technique was initially applied to a steady spray generated in a wind tunnel. It was found that although the spray was initially steady, the aerodynamic breakup process was inherently unsteady. This resulted in a wide variation of the instantaneous LWC of the droplet laden airstream. The standard deviation of ten separate LWC measurements was 31% of the average. However, the liquid mass flux calculated from the average LWC and droplet velocities came within 10% of the known water ingestion rate

    Antimisting fuel breakup and flammability

    Get PDF
    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated

    Antimisting kerosene: Low temperature degradation and blending

    Get PDF
    The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures

    Vacua and correlators in hyperbolic de Sitter space

    Get PDF
    We study the power - and bi -spectrum of vacuum fluctuations in a hyperbolic section of de Sitter space, comparing two states of physical interest: the Bunch-Davies and hyperbolic vacuum. We introduce a one -parameter family of de Sitter hyperbolic sections and their natural vacua, and identify a limit in which it reduces to the planar section and the corresponding Bunch -Davies vacuum state. Selecting the Bunch -Davies vacuum for a massless scalar field implies a mixed reduced density matrix in a hyperbolic section of de Sitter space. We stress that in the Bunch -Davies state the hyperbolic de Sitter nn-point correlation functions have to match the planar de Sitter nn-point correlation functions. The expressions for the planar and hyperbolic Bunch -Davies correlation functions only appear different because of the transformation from planar to hyperbolic coordinates. Initial state induced deviations from the standard inflationary predictions are instead obtained by considering the pure hyperbolic vacuum, as we verify explicitly by computing the power - and bi -spectrum. For the bi -spectrum in the hyperbolic vacuum we find that the corrections as compared to the standard Bunch -Davies result are not enhanced in specific momentum configurations and strongly suppressed for momenta large compared to the hyperbolic curvature scale. We close with some final remarks, in particular regarding the implications of these results for more realistic inflationary bubble scenarios.Comment: Added references, removed typos, added author, extensions in first section and conclusions. 34 pages, 4 figure

    Lining of Perennial Canals Under Flowing Conditions by Ulomat Grouted Mattress Technique

    Get PDF
    Irrigation water is made available to the farmers by means of construction of a dam/weir and a canal system taking off from the reservoir impounded behind the dam. This water is therefore very precious. If the canal system is not lined, about 25 to 30 per cent of water released in the canal is lost by way of seepage through canals. Canals should therefore be lined not only to save this water but also to irrigate additional area. A pilot project of providing such lining on experimental basis was taken up for the first time in India by Irrigation Department of the Government of Gujarat. The lining has been provided on their canals of different capacities in the Ukai-Kakrapar command. Also a special experimental model has been developed in the laboratory to evaluate the interacted efficiency of grout and geotextile mattress from the consideration of strength and permeability

    Very hard states in neutron star low-mass X-ray binaries

    Get PDF
    We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248, and IGR J18245-2452) at a luminosity between ~ 10^{36-37} erg s^{-1}. When fitting the Swift X-ray spectra (0.5 - 10 keV) in those states with an absorbed power-law model, we found photon indices of \Gamma ~ 1, significantly lower than the \Gamma = 1.5 - 2.0 typically seen when such systems are in their so called hard state. For individual sources very hard spectra were already previously identified but here we show for the first time that likely our sources were in a distinct spectral state (i.e., different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (i.e., up-scattering of soft photons due to hot electrons) then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained \Gamma as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. (2015). We confirm their general results in that also our sample of sources follow the same track as the other neutron star systems, although we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.Comment: Accepted for publication in MNRA

    Forecasting Solar Home System Customers’ Electricity Usage with a 3D Convolutional Neural Network to Improve Energy Access

    Get PDF
    Off-grid technologies, such as solar home systems (SHS), offer the opportunity to alleviate global energy poverty, providing a cost-effective alternative to an electricity grid connection. However, there is a paucity of high-quality SHS electricity usage data and thus a limited understanding of consumers’ past and future usage patterns. This study addresses this gap by providing a rare large-scale analysis of real-time energy consumption data for SHS customers (n = 63,299) in Rwanda. Our results show that 70% of SHS users’ electricity usage decreased a year after their SHS was installed. This paper is novel in its application of a three-dimensional convolutional neural network (CNN) architecture for electricity load forecasting using time series data. It also marks the first time a CNN was used to predict SHS customers’ electricity consumption. The model forecasts individual households’ usage 24 h and seven days ahead, as well as an average week across the next three months. The last scenario derived the best performance with a mean squared error of 0.369. SHS companies could use these predictions to offer a tailored service to customers, including providing feedback information on their likely future usage and expenditure. The CNN could also aid load balancing for SHS based microgrids
    • …
    corecore