4,071 research outputs found
Collective oscillations in spatially modulated exciton-polariton condensate arrays
We study collective dynamics of interacting centers of exciton-polariton
condensation in presence of spatial inhomogeneity, as modeled by diatomic
active oscillator lattices. The mode formalism is developed and employed to
derive existence and stability criteria of plane wave solutions. It is
demonstrated that wave number mode with the binary elementary cell on a
diatomic lattice possesses superior existence and stability properties.
Decreasing net on-site losses (balance of dissipation and pumping) or
conservative nonlinearity favors multistability of modes, while increasing
frequency mismatch between adjacent oscillators detriments it. On the other
hand, spatial inhomogeneity may recover stability of modes at high
nonlinearities. Entering the region where all single-mode solutions are
unstable we discover subsequent transitions between localized quasiperiodic,
chaotic and global chaotic dynamics in the mode space, as nonlinearity
increases. Importantly, the last transition evokes the loss of synchronization.
These effects may determine lasing dynamics of interacting exciton-polariton
condensation centers.Comment: 9 pages, 3 figure
Modeling of kinetics of nonisothermal vulcanization of massive rubber products
The problem of vulcanization (curing) of massive products is considered important for technology of processing of polymers. It is shown, that during structurization compound rubber materials distribution of temperatures on all section is unequal, that results in distinction in structure and properties of such samples. Temperature fields in cuts of a product are designed and dependences of change of structural parameters are established. Kinetic characteristics of process of vulcanization are determined and recommendations on creation and updating of modes of vulcanization massive elastomer products are produced
On detection of narrow angle e+e- pairs from dark photon decays
A class of models of dark sectors consider new very weak interaction between
the ordinary and dark matter transmitted by U'(1) gauge bosons A' (dark
photons) mixing with our photons. If such A's exist, they could be searched for
in a light-shining-through-a-wall experiment with a high energy electron beam
from the CERN SPS. The proposed search scheme suggests detection of the e+e-
pairs produced in the A' -> e+e- decay with a very small opening angle.
Coordinate chambers based on the thin-wall drift tubes with a minimal material
budget and a two-hit resolution for e+ and e- tracks separated by more than 0.5
mm are considered as an option for detecting such pairs
Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS
We report on a direct search for sub-GeV dark photons (A') which might be
produced in the reaction e^- Z \to e^- Z A' via kinetic mixing with photons by
100 GeV electrons incident on an active target in the NA64 experiment at the
CERN SPS. The A's would decay invisibly into dark matter particles resulting in
events with large missing energy. No evidence for such decays was found with
2.75\cdot 10^{9} electrons on target. We set new limits on the \gamma-A' mixing
strength and exclude the invisible A' with a mass < 100 MeV as an explanation
of the muon g_\mu-2 anomaly.Comment: 6 pages, 3 figures; Typos corrected, references adde
Fast photoprocesses in a symmetric indotricarbocyanine dye (hitc) in solutions
Spectral-kinetic and photochemical properties of HITC dye with iodide and perchlorate counterions have been studied in environments where the dye molecules exist in different ionic forms. In ethanol, the dye molecules exist as free ions; in dichlorobenzene, as contact ion pairs. Superfast transformation of non-stationary spectra in an HITC dye bleaching band is found. The observed effects are interpreted within the framework of concepts on "burning out" a notch in the contour of a non-uniformly widened vibronic band of S0 → S1-absorption. Qualitative differences in recorded absorption spectra from the dye excited electronic states for weakly and highly polar solvents are found. It is shown that the observed differences are caused by superfast charge transfer in the contact ion pairs that results in the formation of free radicals
Test beam studies of the TRD prototype filled with different gas mixtures based on Xe, Kr, and Ar
Towards the end of LHC Run1, gas leaks were observed in some parts of the
Transition Radiation Tracker (TRT) of ATLAS. Due to these leaks, primary Xenon
based gas mixture was replaced with Argon based mixture in various parts.
Test-beam studies with a dedicated Transition Radiation Detector (TRD)
prototype were carried out in 2015 in order to understand transition radiation
performance with mixtures based on Argon and Krypton. We present and discuss
the results of these test-beam studies with different active gas compositions.Comment: 5 pages,12 figures, The 2nd International Conference on Particle
Physics and Astrophysics (ICPPA-2016); Acknowledgments section correcte
Some results of test beam studies of Transition Radiation Detector prototypes at CERN
Operating conditions and challenging demands of present and future
accelerator experiments result in new requirements on detector systems. There
are many ongoing activities aimed to develop new technologies and to improve
the properties of detectors based on existing technologies. Our work is
dedicated to development of Transition Radiation Detectors (TRD) suitable for
different applications. In this paper results obtained in beam tests at SPS
accelerator at CERN with the TRD prototype based on straw technology are
presented. TRD performance was studied as a function of thickness of the
transition radiation radiator and working gas mixture pressure
- …