37 research outputs found
Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting
Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression
Theoretical Analysis of Competing Conformational Transitions in Superhelical DNA
We develop a statistical mechanical model to analyze the competitive behavior of transitions to multiple alternate conformations in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. Since DNA superhelicity topologically couples together the transition behaviors of all base pairs, a unified model is required to analyze all the transitions to which the DNA sequence is susceptible. Here we present a first model of this type. Our numerical approach generalizes the strategy of previously developed algorithms, which studied superhelical transitions to a single alternate conformation. We apply our multi-state model to study the competition between strand separation and B-Z transitions in superhelical DNA. We show this competition to be highly sensitive to temperature and to the imposed level of supercoiling. Comparison of our results with experimental data shows that, when the energetics appropriate to the experimental conditions are used, the competition between these two transitions is accurately captured by our algorithm. We analyze the superhelical competition between B-Z transitions and denaturation around the c-myc oncogene, where both transitions are known to occur when this gene is transcribing. We apply our model to explore the correlation between stress-induced transitions and transcriptional activity in various organisms. In higher eukaryotes we find a strong enhancement of Z-forming regions immediately 5′ to their transcription start sites (TSS), and a depletion of strand separating sites in a broad region around the TSS. The opposite patterns occur around transcript end locations. We also show that susceptibility to each type of transition is different in eukaryotes and prokaryotes. By analyzing a set of untranscribed pseudogenes we show that the Z-susceptibility just downstream of the TSS is not preserved, suggesting it may be under selection pressure
HPLC photofingerprinting of conformational peculiarities and transitions in oligonucleotide duplexes
Length-dependent structure formation in Friedreich ataxia (GAA)(n)·(TTC)(n) repeats at neutral pH
More than 15 human genetic diseases have been associated with the expansion of trinucleotide DNA repeats, which may involve the formation of non-duplex DNA structures. The slipped-strand nucleation of duplex DNA within GC-rich trinucleotide repeats may result in the changes of repeat length; however, such a mechanism seems less likely for the AT-rich (GAA)(n)·(TTC)(n) repeats. Using two-dimensional agarose gels, chemical probing and atomic force microscopy, we characterized the formation of non-B-DNA structures in the Friedreich ataxia-associated (GAA)(n)·(TTC)(n) repeats from the FRDA gene that were cloned with flanking genomic sequences into plasmids. For the normal genomic repeat length (n = 9) our data are consistent with the formation of a very stable protonated intramolecular triplex (H-DNA). Its stability at pH 7.4 is likely due to the high proportion of the T·A·T triads which form within the repeats as well as in the immediately adjacent AT-rich sequences with a homopurine· homopyrimidine bias. At the long normal repeat length (n = 23), a family of H-DNAs of slightly different sizes has been detected. At the premutation repeat length (n = 42) and higher negative supercoiling, the formation of a single H-DNA structure becomes less favorable and the data are consistent with the formation of a bi-triplex structure