115 research outputs found
Elite opinion and foreign policy in post-communist Russia
Russian elite opinion on matters of foreign policy may be classified as âLiberal Westerniserâ, âPragmatic Nationalistâ and âFundamentalist Nationalistâ, terms that reflect longstanding debates about the countryâs relationship with the outside world. An analysis of press
statements and election manifestoes together with a programme of elite interviews between 2004 and 2006 suggests a clustering of opinion on a series of strategic issues. Liberal Westernisers seek the closest possible relationship with Europe, and favour eventual membership of the EU and NATO. Pragmatic Nationalists are more inclined to favour practical co-operation, and do not assume an identity of values or interests with the Western countries. Fundamentalist Nationalists place more emphasis on the other former Soviet republics, and on Asia as much as Europe, and see the West as a threat to Russian values as well as to its state interests. Each of these positions,
in turn, draws on an identifiable set of domestic constituencies: Liberal Westernisers on the promarket political parties, Pragmatic Nationalists on the presidential administration and defence and security ministries, and Fundamentalist Nationalists on the Orthodox Church and Communists
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
Effect of cholesterol on the dipole potential of lipid membranes
The membrane dipole potential, Ïd, is an electrical potential difference with a value typically in the range 150 â 350 mV (positive in the membrane interior) which is located in the lipid headgroup region of the membrane, between the linkage of the hydrocarbon chains to the phospholipid glycerol backbone and the adjacent aqueous solution. At its physiological level in animal plasma membranes (up to 50 mol%), cholesterol makes a significant contribution to Ïd of approximately 65 mV; the rest arising from other lipid components of the membrane, in particular phospholipids. Via its effect on Ïd, cholesterol may modulate the activity of membrane proteins. This could occur through preferential stabilization of protein conformational states. Based on its effect on Ïd, cholesterol would be expected to favour protein conformations associated with a small local hydrophobic membrane thickness. Via its membrane condensing effect, which also produces an increase in Ïd, cholesterol could further modulate interactions of polybasic cytoplasmic extensions of membrane proteins, in particular P-type ATPases, with anionic lipid headgroups on the membrane surface, thus leading to enhanced conformational stabilization effects and changes to ion pumping activity.Australian Research Counci
Novel Type of Tetranitrosyl Iron Salt: Synthesis, Structure and Antibacterial Activity of Complex [FeLâ<sub>2</sub>(NO)<sub>2</sub>][FeLâLâ(NO)<sub>2</sub>] with Lâ-thiobenzamide and Lâ-thiosulfate
In this work a new donor of nitric oxide (NO) with antibacterial properties, namely nitrosyl iron complex of [Fe(C6H5C-SNH2)2(NO)2][Fe(C6H5C-SNH2)(S2O3)(NO)2] composition (complex I), has been synthesized and studied. Complex I was produced by the reduction of the aqueous solution of [Fe2(S2O3)2(NO)2]2â dianion by the thiosulfate, with the further treatment of the mixture by the acidified alcohol solution of thiobenzamide. Based on the structural study of I (X-ray analysis, quantum chemical calculations by NBO and QTAIM methods in the frame of DFT), the data were obtained on the presence of the NOâŠNO interactions, which stabilize the DNIC dimer in the solid phase. The conformation properties, electronic structure and free energies of complex I hydration were studied using B3LYP functional and the set of 6â31 + G(d,p) basis functions. The effect of an aquatic surrounding was taken into account in the frame of a polarized continuous model (PCM). The NO-donating activity of complex I was studied by the amperometry method using an âamiNO-700â sensor electrode of the âinNO Nitric Oxide Measuring Systemâ. The antibacterial activity of I was studied on gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria. Cytotoxicity was studied using Vero cells. Complex I was found to exhibit antibacterial activity comparable to that of antibiotics, and moderate toxicity to Vero cells
- âŠ