30 research outputs found
Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach
This paper introduces and analyses the new grid-based tensor approach to
approximate solution of the elliptic eigenvalue problem for the 3D
lattice-structured systems. We consider the linearized Hartree-Fock equation
over a spatial lattice for both periodic and
non-periodic problem setting, discretized in the localized Gaussian-type
orbitals basis. In the periodic case, the Galerkin system matrix obeys a
three-level block-circulant structure that allows the FFT-based
diagonalization, while for the finite extended systems in a box (Dirichlet
boundary conditions) we arrive at the perturbed block-Toeplitz representation
providing fast matrix-vector multiplication and low storage size. The proposed
grid-based tensor techniques manifest the twofold benefits: (a) the entries of
the Fock matrix are computed by 1D operations using low-rank tensors
represented on a 3D grid, (b) in the periodic case the low-rank tensor
structure in the diagonal blocks of the Fock matrix in the Fourier space
reduces the conventional 3D FFT to the product of 1D FFTs. Lattice type systems
in a box with Dirichlet boundary conditions are treated numerically by our
previous tensor solver for single molecules, which makes possible calculations
on rather large lattices due to reduced numerical
cost for 3D problems. The numerical simulations for both box-type and periodic
lattice chain in a 3D rectangular "tube" with up to
several hundred confirm the theoretical complexity bounds for the
block-structured eigenvalue solvers in the limit of large .Comment: 30 pages, 12 figures. arXiv admin note: substantial text overlap with
arXiv:1408.383
A Reduced Basis Approach for Calculation of the Bethe-Salpeter Excitation Energies by using Low-Rank Tensor Factorisations
The Bethe-Salpeter equation (BSE) is a reliable model for estimating the absorption spectra in molecules and solids on the basis of accurate calculation of the excited states from first principles. This challenging task includes calculation of the BSE operator in terms of two-electron integrals tensor represented in molecular orbital basis, and introduces a complicated algebraic task of solving the arising large matrix eigenvalue problem. The direct diagonalization of the BSE matrix is practically intractable due to complexity scaling in the size of the atomic orbitals basis set, . In this paper, we present a new approach to the computation of Bethe-Salpeter excitation energies which can lead to relaxation of the numerical costs up to . The idea is twofold: first, the diagonal plus low-rank tensor approximations to the fully populated blocks in the BSE matrix is constructed, enabling easier partial eigenvalue solver for a large auxiliary system relying only on matrix-vector multiplications with rank-structured matrices. And second, a small subset of eigenfunctions from the auxiliary eigenvalue problem is selected to build the Galerkin projection of the exact BSE system onto the reduced basis set. We present numerical tests on BSE calculations for a number of molecules confirming the -rank bounds for the blocks of BSE matrix. The numerics indicates that the reduced BSE eigenvalue problem with small matrices enables calculation of the lowest part of the excitation spectrum with sufficient accuracy