30 research outputs found

    Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach

    Get PDF
    This paper introduces and analyses the new grid-based tensor approach to approximate solution of the elliptic eigenvalue problem for the 3D lattice-structured systems. We consider the linearized Hartree-Fock equation over a spatial L1×L2×L3L_1\times L_2\times L_3 lattice for both periodic and non-periodic problem setting, discretized in the localized Gaussian-type orbitals basis. In the periodic case, the Galerkin system matrix obeys a three-level block-circulant structure that allows the FFT-based diagonalization, while for the finite extended systems in a box (Dirichlet boundary conditions) we arrive at the perturbed block-Toeplitz representation providing fast matrix-vector multiplication and low storage size. The proposed grid-based tensor techniques manifest the twofold benefits: (a) the entries of the Fock matrix are computed by 1D operations using low-rank tensors represented on a 3D grid, (b) in the periodic case the low-rank tensor structure in the diagonal blocks of the Fock matrix in the Fourier space reduces the conventional 3D FFT to the product of 1D FFTs. Lattice type systems in a box with Dirichlet boundary conditions are treated numerically by our previous tensor solver for single molecules, which makes possible calculations on rather large L1×L2×L3L_1\times L_2\times L_3 lattices due to reduced numerical cost for 3D problems. The numerical simulations for both box-type and periodic L×1×1L\times 1\times 1 lattice chain in a 3D rectangular "tube" with LL up to several hundred confirm the theoretical complexity bounds for the block-structured eigenvalue solvers in the limit of large LL.Comment: 30 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1408.383

    Tensor numerical methods in quantum chemistry

    No full text

    A Reduced Basis Approach for Calculation of the Bethe-Salpeter Excitation Energies by using Low-Rank Tensor Factorisations

    No full text
    The Bethe-Salpeter equation (BSE) is a reliable model for estimating the absorption spectra in molecules and solids on the basis of accurate calculation of the excited states from first principles. This challenging task includes calculation of the BSE operator in terms of two-electron integrals tensor represented in molecular orbital basis, and introduces a complicated algebraic task of solving the arising large matrix eigenvalue problem. The direct diagonalization of the BSE matrix is practically intractable due to O(N6)O(N^6) complexity scaling in the size of the atomic orbitals basis set, NN. In this paper, we present a new approach to the computation of Bethe-Salpeter excitation energies which can lead to relaxation of the numerical costs up to O(N3)O(N^3). The idea is twofold: first, the diagonal plus low-rank tensor approximations to the fully populated blocks in the BSE matrix is constructed, enabling easier partial eigenvalue solver for a large auxiliary system relying only on matrix-vector multiplications with rank-structured matrices. And second, a small subset of eigenfunctions from the auxiliary eigenvalue problem is selected to build the Galerkin projection of the exact BSE system onto the reduced basis set. We present numerical tests on BSE calculations for a number of molecules confirming the ε\varepsilon-rank bounds for the blocks of BSE matrix. The numerics indicates that the reduced BSE eigenvalue problem with small matrices enables calculation of the lowest part of the excitation spectrum with sufficient accuracy
    corecore