120 research outputs found
LUCI onboard Lagrange, the Next Generation of EUV Space Weather Monitoring
LUCI (Lagrange eUv Coronal Imager) is a solar imager in the Extreme
UltraViolet (EUV) that is being developed as part of the Lagrange mission, a
mission designed to be positioned at the L5 Lagrangian point to monitor space
weather from its source on the Sun, through the heliosphere, to the Earth. LUCI
will use an off-axis two mirror design equipped with an EUV enhanced active
pixel sensor. This type of detector has advantages that promise to be very
beneficial for monitoring the source of space weather in the EUV. LUCI will
also have a novel off-axis wide field-of-view, designed to observe the solar
disk, the lower corona, and the extended solar atmosphere close to the
Sun-Earth line. LUCI will provide solar coronal images at a 2-3 minute cadence
in a pass-band centred on 19.5 nm. Observations made through this pass-band
allow for the detection and monitoring of semi-static coronal structures such
as coronal holes, prominences, and active regions; as well as transient
phenomena such as solar flares, limb Coronal Mass Ejections (CMEs), EUV waves,
and coronal dimmings. The LUCI data will complement EUV solar observations
provided by instruments located along the Sun-Earth line such as PROBA2-SWAP,
SUVI-GOES and SDO-AIA, as well as provide unique observations to improve space
weather forecasts. Together with a suite of other remote-sensing and in-situ
instruments onboard Lagrange, LUCI will provide science quality operational
observations for space weather monitoring
3D evolution of a filament disappearance event observed by STEREO
A filament disappearance event was observed on 22 May 2008 during our recent
campaign JOP 178. The filament, situated in the southern hemisphere, showed
sinistral chirality consistent with the hemispheric rule. The event was well
observed by several observatories in particular by THEMIS. One day before the
disappearance, H observations showed up and down flows in adjacent
locations along the filament, which suggest plasma motions along twisted flux
rope. THEMIS and GONG observations show shearing photospheric motions leading
to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation
angle 52.4 degrees, showed quite different views of this untwisting flux rope
in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament
during its eruption phase using STEREO EUV He II 304 \AA\ images and find that
the filament was highly inclined to the solar normal. The He II 304 \AA\ movies
show individual threads, which oscillate and rise to an altitude of about 120
Mm with apparent velocities of about 100 km s, during the rapid
evolution phase. Finally, as the flux rope expands into the corona, the
filament disappears by becoming optically thin to undetectable levels. No CME
was detected by STEREO, only a faint CME was recorded by LASCO at the beginning
of the disappearance phase at 02:00 UT, which could be due to partial filament
eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath
the filament prior to the disappearance phase, suggesting magnetic reconnection
below the flux rope
Prominence eruption observed in He II 304 Å up to >6 R⊙ by EUI/FSI aboard Solar Orbiter⋆
Aims. We report observations of a unique, large prominence eruption that was observed in the He II 304 Å passband of the Extreme Ultraviolet Imager/Full Sun Imager telescope aboard Solar Orbiter on 15–16 February 2022.
Methods. Observations from several vantage points – Solar Orbiter, the Solar-Terrestrial Relations Observatory, the Solar and Heliospheric Observatory, and Earth-orbiting satellites – were used to measure the kinematics of the erupting prominence and the associated coronal mass ejection. Three-dimensional reconstruction was used to calculate the deprojected positions and speeds of different parts of the prominence. Observations in several passbands allowed us to analyse the radiative properties of the erupting prominence.
Results. The leading parts of the erupting prominence and the leading edge of the corresponding coronal mass ejection propagate at speeds of around 1700 km s−1 and 2200 km s−1, respectively, while the trailing parts of the prominence are significantly slower (around 500 km s−1). Parts of the prominence are tracked up to heights of over 6 R⊙. The He II emission is probably produced via collisional excitation rather than scattering. Surprisingly, the brightness of a trailing feature increases with height.
Conclusions. The reported prominence is the first observed in He II 304 Å emission at such a great height (above 6 R⊙)
Beyond the disk: EUV coronagraphic observations of the Extreme Ultraviolet Imager on board Solar Orbiter
Context. Most observations of the solar corona beyond 2 R consist of broadband visible light imagery carried out with coronagraphs. The associated diagnostics mainly consist of kinematics and derivations of the electron number density. While the measurement of the properties of emission lines can provide crucial additional diagnostics of the coronal plasma (temperatures, velocities, abundances, etc.), these types of observations are comparatively rare. In visible wavelengths, observations at these heights are limited to total eclipses. In the ultraviolet (UV) to extreme UV (EUV) range, very few additional observations have been achieved since the pioneering results of the Ultraviolet Coronagraph Spectrometer (UVCS). Aims. One of the objectives of the Full Sun Imager (FSI) channel of the Extreme Ultraviolet Imager (EUI) on board the Solar Orbiter mission has been to provide very wide field-of-view EUV diagnostics of the morphology and dynamics of the solar atmosphere in temperature regimes that are typical of the lower transition region and of the corona. Methods. FSI carries out observations in two narrowbands of the EUV spectrum centered on 17.4 nm and 30.4 nm that are dominated, respectively, by lines of FeIX/X (formed in the corona around 1 MK) and by the resonance line of HeII (formed around 80 kK in the lower transition region). Unlike previous EUV imagers, FSI includes a moveable occulting disk that can be inserted in the optical path to reduce the amount of instrumental stray light to a minimum. Results. FSI detects signals at 17.4 nm up to the edge of its field of view (7 R), which is about twice further than was previously possible. Operation at 30.4 nm are for the moment compromised by an as-yet unidentified source of stray light. Comparisons with observations by the LASCO and Metis coronagraphs confirm the presence of morphological similarities and differences between the broadband visible light and EUV emissions, as documented on the basis of prior eclipse and space-based observations. Conclusions. The very-wide-field observations of FSI out to about 3 and 7 R, without and with the occulting disk, respectively, are paving the way for future dedicated instruments
Beyond the disk: EUV coronagraphic observations of the Extreme Ultraviolet Imager on board Solar Orbiter
Most observations of the solar corona beyond 2 Rs consist of broadband
visible light imagery from coronagraphs. The associated diagnostics mainly
consist of kinematics and derivations of the electron number density. While the
measurement of the properties of emission lines can provide crucial additional
diagnostics of the coronal plasma (temperatures, velocities, abundances, etc.),
these observations are comparatively rare. In visible wavelengths, observations
at these heights are limited to total eclipses. In the VUV range, very few
additional observations have been achieved since the pioneering results of
UVCS. One of the objectives of the Full Sun Imager (FSI) channel of the EUI
telescope on board the Solar Orbiter mission has been to provide very wide
field-of-view EUV diagnostics of the morphology and dynamics of the solar
atmosphere in temperature regimes that are typical of the lower transition
region and of the corona. FSI carries out observations in two narrowbands of
the EUV spectrum centered on 17.4 nm and 30.4 nm that are dominated,
respectively, by lines of Fe IX/X (formed in the corona around 1 MK) and by the
resonance line of He II (formed around 80 kK in the lower transition region).
Unlike previous EUV imagers, FSI includes a moveable occulting disk that can be
inserted in the optical path to reduce the amount of instrumental stray light
to a minimum. FSI detects signals at 17.4 nm up to the edge of its FOV (7~Rs),
which is about twice further than was previously possible. Comparisons with
observations by the LASCO and Metis coronagraphs confirm the presence of
morphological similarities and differences between the broadband visible light
and EUV emissions, as documented on the basis of prior eclipse and space-based
observations. The very-wide-field observations of FSI are paving the way for
future dedicated instruments
Stereoscopic Analysis of the 19 May 2007 Erupting Filament
A filament eruption, accompanied by a B9.5 flare, coronal dimming and an EUV
wave, was observed by the Solar TERrestrial Relations Observatory (STEREO) on
19 May 2007, beginning at about 13:00 UT. Here, we use observations from the
SECCHI/EUVI telescopes and other solar observations to analyze the behavior and
geometry of the filament before and during the eruption. At this time, STEREO A
and B were separated by about 8.5 degrees, sufficient to determine the
three-dimensional structure of the filament using stereoscopy. The filament
could be followed in SECCHI/EUVI 304 A stereoscopic data from about 12 hours
before to about 2 hours after the eruption, allowing us to determine the 3D
trajectory of the erupting filament. From the 3D reconstructions of the
filament and the chromospheric ribbons in the early stage of the eruption,
simultaneous heating of both the rising filamentary material and the
chromosphere directly below is observed, consistent with an eruption resulting
from magnetic reconnection below the filament. Comparisons of the filament
during eruption in 304 A and Halpha show that when it becomes emissive in He
II, it tends to disappear in Halpha, indicating that the disappearance probably
results from heating or motion, not loss, of filamentary material.Comment: Accepted for publication in Solar Physic
Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment
International audiencePURPOSE: Positron emission tomography (PET) imaging of brain amyloid load has been suggested as a core biomarker for Alzheimer's disease (AD). The aim of this study was to test the feasibility of using PET imaging with (18)F-AV-45 (florbetapir) in a routine clinical environment to differentiate between patients with mild to moderate AD and mild cognitive impairment (MCI) from normal healthy controls (HC). METHODS: In this study, 46 subjects (20 men and 26 women, mean age of 69.0 ± 7.6 years), including 13 with AD, 12 with MCI and 21 HC subjects, were enrolled from three academic memory clinics. PET images were acquired over a 10-min period 50 min after injection of florbetapir (mean ± SD of radioactivity injected, 259 ± 57 MBq). PET images were assessed visually by two individuals blinded to any clinical information and quantitatively via the standard uptake value ratio (SUVr) in the specific regions of interest, which were defined in relation to the cerebellum as the reference region. RESULTS: The mean values of SUVr were higher in AD patients (median 1.20, Q1-Q3 1.16-1.30) than in HC subjects (median 1.05, Q1-Q3 1.04-1.08; p = 0.0001) in the overall cortex and all cortical regions (precuneus, anterior and posterior cingulate, and frontal median, temporal, parietal and occipital cortex). The MCI subjects also showed a higher uptake of florbetapir in the posterior cingulate cortex (median 1.06, Q1-Q3 0.97-1.28) compared with HC subjects (median 0.95, Q1-Q3 0.82-1.02; p = 0.03). Qualitative visual assessment of the PET scans showed a sensitivity of 84.6% (95% CI 0.55-0.98) and a specificity of 38.1% (95% CI 0.18-0.62) for discriminating AD patients from HC subjects; however, the quantitative assessment of the global cortex SUVr showed a sensitivity of 92.3% and specificity of 90.5% with a cut-off value of 1.122 (area under the curve 0.894). CONCLUSION: These preliminary results suggest that PET with florbetapir is a safe and suitable biomarker for AD that can be used routinely in a clinical environment. However, the low specificity of the visual PET scan assessment could be improved by the use of specific training and automatic or semiautomatic quantification tools
Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite
The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum
Expected Performances of the NOMAD/ExoMars instrument
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers – SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in [Vandaele et al., Optics Express, 2015] and [Thomas et al., Optics Express, 2015], the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, H2O, HDO, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, HCN, HO2, NH3, N2O, NO2, OCS, O3. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged [Drummond et al., Planetary Space and Science, 2011]. Results have been obtained for all three channels in nadir and in solar occultation
A Major Role for the Plasmodium falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology
The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology
- …