251 research outputs found

    The Effect of Doping on the Electrophysical Properties of Polycrystalline Diamond Films Deposited from an Abnormal Glow Discharge

    Get PDF
    The paper is focused on the study of the boron doping effect on the electrical characteristics, on the mechanism of charge carrier transfer, and on the energy spectrum of the localized defect states in the polycrystalline diamond films (PDF) deposited from an abnormal glow discharge. PDF doping enables to form the semiconductor layers of p-type conductivity, which have as good properties as those of PDF produced by the alternative methods. The doping reduces the degree of disorder in the film material brought by the growth defects, which determine the film electrical characteristics and electrotransfer mechanism. The PDF electrical characteristics and electrotransfer mechanism are determined by the defects of different nature, whose band gap energy levels have a continuous energy distribution. A p-type activation component is realized in the exchange of charge carriers between the valence band and shallow acceptor levels with the activation energy of 0.013-0.022 eV. Doping increases the effect of the hopping mechanism of the conductivity involving the localized states with a density of (1-6)•10{20} eV{-1}•cm{-3} distributed near the Fermi level, which is in the low half of the band gap

    Selective deposition of polycrystalline diamond films using photolithography with addition of nanodiamonds as nucleation centers

    Get PDF
    A new method of selective deposition of polycrystalline diamond has been developed and studied. The diamond coatings with a complex, predetermined geometry and resolution up to 5 [mu]m were obtained. A high density of polycrystallites in the coating area was reached (up to 32·10{7} pcs/cm{2}). The uniformity of the film reached 100%, and the degree of the surface contamination by parasitic crystals did not exceed 2%. The technology was based on the application of the standard photolithography with an addition of nanodiamond suspension into the photoresist that provided the creation of the centers of further nucleation in the areas which require further overgrowth. The films were deposited onto monocrystalline silicon substrates using the method of "hot filaments" in the CVD reactor. The properties of the coating and the impact of the nanodiamond suspension concentration in the photoresist were also studied. The potential use of the given method includes a high resolution, technological efficiency, and low labor costs compared to the standard methods (laser treatment, chemical etching in aggressive environments)

    Mechanism of Deep-focus Earthquakes Anomalous Statistics

    Full text link
    Analyzing the NEIC-data we have shown that the spatial deep-focus earthquake distribution in the Earth interior over the 1993-2006 is characterized by the clearly defined periodical fine discrete structure with period L=50 km, which is solely generated by earthquakes with magnitude M 3.9 to 5.3 and only on the convergent boundary of plates. To describe the formation of this structure we used the model of complex systems by A. Volynskii and S. Bazhenov. The key property of this model consists in the presence of a rigid coating on a soft substratum. It is shown that in subduction processes the role of a rigid coating plays the slab substance (lithosphere) and the upper mantle acts as a soft substratum. Within the framework of this model we have obtained the estimation of average values of stress in the upper mantle and Young's modulus for the oceanic slab (lithosphere) and upper mantle.Comment: 9 pages, 7 figure

    Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements

    Get PDF
    We introduce the problem of constructing weighted complex projective 2-designs from the union of a family of orthonormal bases. If the weight remains constant across elements of the same basis, then such designs can be interpreted as generalizations of complete sets of mutually unbiased bases, being equivalent whenever the design is composed of d+1 bases in dimension d. We show that, for the purpose of quantum state determination, these designs specify an optimal collection of orthogonal measurements. Using highly nonlinear functions on abelian groups, we construct explicit examples from d+2 orthonormal bases whenever d+1 is a prime power, covering dimensions d=6, 10, and 12, for example, where no complete sets of mutually unbiased bases have thus far been found.Comment: 28 pages, to appear in J. Math. Phy

    The Kramers problem:beyond quasi-stationarity

    Get PDF
    Noise-induced escape from a metastable potential is considered on time-scales preceding the formation of quasi-equilibrium within the metastable part of the potential. It is shown that the escape flux may then depend exponentially strongly, and in a complicated manner, on time and friction

    PLATE FOR SURGICAL TREATMENT FOUR-FRAGMENTAL FRACTURES OF THE PROXIMAL HUMERUS

    Get PDF
    We performed the analysis of proximal humerus fracture surgical treatment results. Reasons of unsatisfactory results of multifragmental fractures surgical reduction revealed. The new construction for multifragmental fractures fixation invented and patented. Our experiments proved this construction to increase the stability of humerus multifragmental fractures fixation

    Raman response of quantum critical ferroelectric pb-doped srtio3

    Get PDF
    A quantum paraelectric SrTiO3 is a material situated in close proximity to a quantum critical point (QCP) of ferroelectric transition in which the critical temperature to the ferroelectric state is suppressed down to 0 K. However, the understanding of the behavior of the phase transition in the vicinity of this point remains challenging. Using the concentration x of Pb in solid solution Sr1−x Pbx TiO3 (PSTx) as a tuning parameter and applying the combination of Raman and dielectric spectroscopy methods, we approach the QCP in PSTx and study the interplay of classical and quantum phenomena in the region of criticality. We obtain the critical temperature of PSTx and the evolution of the temperature-dependent dynamical properties of the system as a function of x to reveal the mechanism of the transition. We show that the ferroelectric transition occurs gradually through the emergence of the polar nanoregions inside the non-polar tetragonal phase with their further expansion on cooling. We also study the ferroelastic cubic-to-tetragonal structural transition, occurring at higher temperatures, and show that its properties are almost concentration-independent and not affected by the quantum criticality.Fil: Linnik, Ekaterina D.. Southern Federal University; RusiaFil: Mikheykin, Alexey S.. Southern Federal University; RusiaFil: Rubi, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; ArgentinaFil: Shirokov, Vladimir B.. No especifíca;Fil: Mezzane, Daoud. No especifíca;Fil: Kondovych, Svitlana V.. No especifíca;Fil: Lukyanchuk, Igor A.. No especifíca;Fil: Razumnaya, Anna G.. Southern Federal University; Rusi

    The peculiarities of cross-correlation between two secondary precursors - radon and magnetic field variations, induced by stress transfer changes

    Full text link
    A model of precursor manifestation mechanisms, stimulated by tectonic activity and some peculiarities of observer strategy, whose main task is the effective measurement of precursors in the spatial area of their occurrence on the Earth's daylight, are considered. In particular, the applicability of Dobrovolsky's approximation is analyzed, when an unperturbed medium (characterized by the simple shear state) and the area of tectonic activity (local inhomogeneity caused by the change only of shear modulus) are linearly elastic, and perturbation, in particular, surface displacement is calculated as a difference of the solutions of two independent static problems of the theory of elasticity with the same boundary condition on the surface. Within the framework of this approximation a formula for the spatial distribution (of first component) of magnetic field variations caused by piezomagnetic effect in the case of perturbed regular medium, which is in simple shear state is derived. Cogent arguments in favor of linear dependence between the radon spatial distribution and conditional deformation are obtained. Changes in magnetic field strength and radon concentrations were measured along a tectonomagnetic profile of the total length of 11 km in the surroundings of the "Academician Vernadsky" Station on the Antarctic Peninsula (W 64{\deg}16', S 65{\deg}15'). Results showed a positive correlation between the annual surface radon concentration and annual changes of magnetic field relative to a base point, and also the good coincidence with theoretical calculation.Comment: 27 pages, 11 figures, 3 tables (a substantially revised and extended edition; v3 -- some analysis of recent publications added

    The effect of dynamical compressive and shear strain on magnetic anisotropy in a low symmetry ferromagnetic film

    Get PDF
    Dynamical strain generated upon excitation of a metallic film by a femtosecond laser pulse may become a versatile tool enabling control of magnetic state of thin _lms and nanostructures via inverse magnetostriction on a picosecond time scale. Here we explore two alternative approaches to manipulate magnetocrystalline anisotropy and excite magnetization precession in a low-symmetry _lm of a magnetic metallic alloy galfenol (Fe,Ga) either by injecting picosecond strain pulse into it from a substrate or by generating dynamical strain of complex temporal profile in the film directly. In the former case we realize ultrafast excitation of magnetization dynamics solely by strain pulses. In the latter case optically-generated strain emerged abruptly in the film modifies its magnetocrystalline anisotropy, competing with heat-induced change of anisotropy parameters. We demonstrate that the optically-generated strain remains efficient for launching magnetization precession, when the heat-induced changes of anisotropy parameters do not trigger the precession anymore. We emphasize that in both approaches the ultrafast change of magnetic anisotropy mediating the precession excitation relies on mixed, compressive and shear, character of the dynamical strain, which emerges due to low-symmetry of the metallic film under study
    corecore