352 research outputs found

    Strong enhancement of spin fluctuations in the low-temperature-tetragonal phase of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4

    Full text link
    Measurements of the static magnetization, susceptibility and ESR of Gd spin probes have been performed to study the properties of antiferromagnetically ordered La_{2-x-y}Eu_ySr_xCuO_4 (x less or equal 0.02) with the low temperature tetragonal structure. According to the static magnetic measurements the CuO_2 planes are magnetically decoupled in this structural phase. The ESR study reveals strong magnetic fluctuations at the ESR frequency which are not present in the orthorhombic phase. It is argued that this drastic enhancement of the spin fluctuations is due to a considerable weakening of the interlayer exchange and a pronounced influence of hole motion on the antiferromagnetic properties of lightly hole doped La_2CuO_4. No evidence for the stripe phase formation at small hole doping is obtained in the present study.Comment: 10 pages, LaTeX, 3 EPS figures; to be published in Journal of Physics: Condensed Matte

    The Adler DD-function for N=1{\cal N}=1 SQCD regularized by higher covariant derivatives in the three-loop approximation

    Full text link
    We calculate the Adler DD-function for N=1{\cal N}=1 SQCD in the three-loop approximation using the higher covariant derivative regularization and the NSVZ-like subtraction scheme. The recently formulated all-order relation between the Adler function and the anomalous dimension of the matter superfields defined in terms of the bare coupling constant is first considered and generalized to the case of an arbitrary representation for the chiral matter superfields. The correctness of this all-order relation is explicitly verified at the three-loop level. The special renormalization scheme in which this all-order relation remains valid for the DD-function and the anomalous dimension defined in terms of the renormalized coupling constant is constructed in the case of using the higher derivative regularization. The analytic expression for the Adler function for N=1{\cal N}=1 SQCD is found in this scheme to the order O(αs2)O(\alpha_s^2). The problem of scheme-dependence of the DD-function and the NSVZ-like equation is briefly discussed.Comment: 25 pages, 2 figures; the version accepted for publication in Nuclear Physics

    Next-to-next-to-leading order fits to CCFR'97 xF3xF_3 data and infrared renormalons

    Get PDF
    We briefly summarize the outcomes of our recent improved fits to the experimental data of CCFR collaboration for xF3xF_3 structure function of νN\nu N deep-inelastic scattering at the next-to-next-to-leading order. Special attention is paid to the extraction of αs(MZ)\alpha_s(M_Z) and the parameter of the infrared renormalon model for 1/Q21/Q^2-correction at different orders of perturbation theory. The results can be of interest for planning similar studies using possible future data of Neutrino Factories.Comment: 3 pages, presented at WG3 of 4th NuFact'02 Workshop, London 1-6 July, 200

    Reconsidered estimates of the 10th order QED contributions to the muon anomaly

    Get PDF
    The problem of estimating the 10th order QED corrections to the muon anomalous magnetic moment is reconsidered. The incorporation of the recently improved contributions to the α4\alpha^4 and α5\alpha^5- corrections to aμa_{\mu} within the renormalization-group inspired scheme-invariant approach leads to the estimate aμ(10)643(α/pi)5a_{\mu}^{(10)}\approx 643(\alpha/pi)^5. It is in good agreement with the estimate aμ(10)=663(20)(α/π)5a_{\mu}^{(10)}= 663(20) (\alpha/\pi)^5, obtained by Kinoshita and Nio from the numerical calculations of 2958 10-th order diagrams, which are considered to be more important than the still uncalculated 6122 10th-order mμ/mem_{\mu}/m_e-dependent vertex graphs, and 12672 5-loop diagrams, responsible for the mass-independent constant contribution both to aμa_{\mu} and aea_e. This confirms Kinoshita and Nio guess about dominance of the 10-th order diagrams calculated by them. Comparisons with other estimates of the α5\alpha^5- contributions to aμa_{\mu}, which exist in the literature, are presented.Comment: 19 pages, LaTeX, some misprints in the text and literature corrected. Results unchaged, to appear in Phys.Rev.

    Magnetism of the LTT phase of Eu doped La_{2-x}Sr_xCuO_4

    Full text link
    The ESR signal of Gd spin probes (0.5 at %) as well as the static normal state susceptibility of Eu (J(Eu^{3+})=0) doped La_{2-x-y}Sr_xEu_yCuO_4 reveal pronounced changes of the Cu magnetism at the structural transition from the orthorhombic to the low temperature tetragonal phase for all non-superconducting compositions. Both a jumplike decrease of \chi as well as the ESR data show an increase of the in-plane magnetic correlation length in the LTT phase. From the Gd^{3+} ESR linewidth we find that for specific Eu and Sr concentrations in the LTT phase the correlation length increases up to more than 100 lattice constants and the fluctuation frequency of the CuO_2 spin system slows down to 10^{10}- 10^{11}sec^{-1}. However, there is no static order above T ~ 8K in contrast to the LTT phase of Nd doped La_{2-x}Sr_xCuO_4 with pinned stripe correlations.Comment: 7 pages, RevTex, 3 eps figures. To appear in the Proceedings of the International Conference "Stripes, Lattice Instabilities and High Tc Superconductivity", (Rome, Dec. 1996

    Heat Treatment Effect on Magnetic Microstructure of Fe73.9Cu1Nb3Si13.2B8.9 Thin Films

    Full text link
    Fe73.9Cu1Nb3Si13.2B8.9 (Finemet) thin films were deposited on the glass substrates by means of radio frequency sputtering. The films thickness was varied from 10 to 200 nm. Heat treatment at temperatures of 350, 400 and 450 °C were performed for 30 minutes in order to control thin film structural state. The X-ray powder diffractometry revealed that the crystallization of α-FeSi nanograins took place only at 450 °C whilst the other samples stayed in the amorphous state. Relation between the structure and magnetic properties of the films was discussed in the framework of random magnetic anisotropy model and the concept of stochastic magnetic domains. The latter was investigated using magnetic force microscopy (MFM). MFM data showed formation of such magnetic domains only in samples thermally treated at 450 °C. There was a tendency of the magnetic domain size reduction with the thickness decrease. © 2018 The Authors, published by EDP Sciences.The research was supported by the Ministry of Education and Science of the Russian Federation Agreement no. 02.A03.21.0006 and project no. 3.6121.2017

    The incarnation of the Nersesyan-Tsvelik model in (NO)[Cu(NO3)3]

    Full text link
    The topology of the magnetic interactions of the copper spins in the nitrosonium nitratocuprate (NO)[Cu(NO3)3] suggests that it could be a realization of the Nersesyan-Tsvelik model, whose ground state was argued to be either a resonating valence bond (RVB) state or a valence bond crystal (VBC). The measurement of thermodynamic and resonant properties reveals a behavior inherent to low dimensional spin S = 1/2 systems and provides indeed no evidence for the formation of long-range magnetic order down to 1.8 K.Comment: 12 pages, 6 figure

    Nanocrystallization in FINEMET-type Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 thin films

    Get PDF
    A growing variety of microelectronic devices and magnetic field sensors as well as a trend of miniaturization demands the development of low-dimensional magnetic materials and nanostructures. Among them, soft magnetic thin films of Finemet alloys are appropriate materials for sensor and actuator devices. Therefore, one of the important directions of the research is the optimization of thin film magnetic properties. In this study, the structural transformations of the Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 films of 100, 150 and 200 nm thicknesses were comparatively analyzed together with their magnetic properties and magnetic anisotropy. The thin films were prepared using the ion-plasma sputtering technique. The crystallization process was studied by certified X-ray diffraction (XRD) methods. The kinetics of crystallization was observed due to the temperature X-ray diffraction (TDX) analysis. Magnetic properties of the films were studied by the magneto-optical Kerr microscopy. Based on the TDX data the delay of the onset crystallization of the films with its thickness decreasing was shown. Furthermore, the onset crystallization of the 150 and 200 nm films began at the temperature of about 400-420 °C showing rapid grain growth up to the size of 16-20 nm. The best magnetic properties of the films were formed after crystallization after the heat treatment at 350-400 °C when the stress relaxation took place. © 2020 by the authors.KK-2018/00099Ministry of Education and Science of the Russian Federation, Minobrnauka: 3.6121.2017/8.9Funding: The XRD study was funded by ACTIMAT (KK-2018/00099, Elkartek program). The magnetic properties study was supported by the Ministry of Education and Science of the Russian Federation in the framework of state tasks No. 3.6121.2017/8.9

    Finite size effects and magnetic order in the spin-1/2 honeycomb lattice compound InCu{2/3}V{1/3}O{3}

    Full text link
    High field electron spin resonance, nuclear magnetic resonance and magnetization studies addressing the ground state of the quasi two-dimensional spin-1/2 honeycomb lattice compound InCu{2/3}V{1/3}O{3} are reported. Uncorrelated finite size structural domains occurring in the honeycomb planes are expected to inhibit long range magnetic order. Surprisingly, ESR data reveal the development of two collinear antiferromagnetic (AFM) sublattices below ~ 20 K whereas NMR results show the presence of the staggered internal field. Magnetization data evidence a spin reorientation transition at ~ 5.7 T. Quantum Monte-Carlo calculations show that switching on the coupling between the honeycomb spin planes in a finite size cluster yields a Neel-like AFM spin structure with a substantial staggered magnetization at finite temperatures. This may explain the occurrence of a robust AFM state in InCu{2/3}V{1/3}O{3} despite an unfavorable effect of structural disorder.Comment: revised version, accepted as a Rapid Communication in Phys. Rev. B (2010
    corecore