252 research outputs found
The quasi-molecular stage of ternary fission
We developed a three-center phenomenological model,able to explain qualitatively the recently obtained experimental results concerning the quasimolecular stage of a light-particle accompanied fission process. It was derived from the liquid drop model under the assumption that the aligned configuration, with the emitted particle between the light and heavy fragment, is reached by increasing continuously the separation distance, while the radii of the heavy fragment and of the light particle are kept constant. In such a way,a new minimum of a short-lived molecular state appears in the deformation energy at a separation distance very close to the touching point. This minimum allows the existence of a short-lived quasi-molecular state, decaying into the three final fragments.The influence of the shell effects is discussed. The half-lives of some quasimolecular states which could be formed in the Be and C accompanied fission of Cf are roughly estimated to be the order of 1 ns, and 1 ms, respectively
Plasma Resonance in Layered Normal Metals and Superconductors
A microscopic theory of the plasma resonance in layered metals is presented.
It is shown that electron-impurity scattering can suppress the plasma resonance
in the normal state and sharpen it in the superconducting state. Analytic
properties of the conductivity for the electronic transport perpendicular to
the layers are investigated. The dissipative part of the electromagnetic
response in c-direction has been found to depend on frequency in a highly
non-trivial manner. This sort of behavior cannot be incorporated in the widely
used phenomenological Gorter-Kazimir model.Comment: 34 pages including 12 figures in uuencoded.file. A revised version.
Several formulas and a number of misprints are corrected. A problem with
printing of figures is fixe
Weak Field Magnetoresistance in Quasi-One-Dimensional Systems
Theoretical studies are presented on weak localization effects and
magnetoresistance in quasi-one-dimensional systems with open Fermi surfaces.
Based on the Wigner representation, the magnetoresistance in the region of weak
field has been studied for five possible configurations of current and field
with respect to the one-dimensional axis. It has been indicated that the
anisotropy and its temperature dependences of the magnetoresistance will give
information on the degree of one-dimensionality and the phase relaxation time.Comment: pages 11, LaTeX, 5 figures, uses jpsj.sty. To be published in J.
Phys. Soc. Jpn. (Vol.67(1998) No.4); Added some references and a Note at Feb.
13 199
Field-induced phase transitions in a Kondo insulator
We study the magnetic-field effect on a Kondo insulator by exploiting the
periodic Anderson model with the Zeeman term. The analysis using dynamical mean
field theory combined with quantum Monte Carlo simulations determines the
detailed phase diagram at finite temperatures. At low temperatures, the
magnetic field drives the Kondo insulator to a transverse antiferromagnetic
phase, which further enters a polarized metallic phase at higher fields. The
antiferromagnetic transition temperature takes a maximum when the Zeeman
energy is nearly equal to the quasi-particle gap. In the paramagnetic phase
above , we find that the electron mass gets largest around the field where
the quasi-particle gap is closed. It is also shown that the induced moment of
conduction electrons changes its direction from antiparallel to parallel to the
field.Comment: 7 pages, 6 figure
Multiplet Effects in the Quasiparticle Band Structure of the Anderson Model
In this paper, we examine the mean field electronic structure of the
Anderson lattice model in a slave boson approximation, which should
be useful in understanding the physics of correlated metals with more than one
f electron per site such as uranium-based heavy fermion superconductors. We
find that the multiplet structure of the ion acts to quench the crystal
field splitting in the quasiparticle electronic structure. This is consistent
with experimental observations in such metals as .Comment: 9 pages, revtex, 3 uuencoded postscript figures attached at en
Dimensional Crossover of Weak Localization in a Magnetic Field
We study the dimensional crossover of weak localization in strongly
anisotropic systems. This crossover from three-dimensional behavior to an
effective lower dimensional system is triggered by increasing temperature if
the phase coherence length gets shorter than the lattice spacing . A similar
effect occurs in a magnetic field if the magnetic length becomes shorter
than , where \D_{||}/D_\perp is the ratio of the
diffusion coefficients parallel and perpendicular to the planes or chains.
depends on the direction of the magnetic field, e.g. or
1/2 for a magnetic field parallel or perpendicular to the planes in a quasi
two-dimensional system. We show that even in the limit of large magnetic field,
weak localization is not fully suppressed in a lattice system. Experimental
implications are discussed in detail.Comment: RevTeX, 11 pages, 4 figures; three references added and discusse
A TQFT associated to the LMO invariant of three-dimensional manifolds
We construct a Topological Quantum Field Theory (in the sense of Atiyah)
associated to the universal finite-type invariant of 3-dimensional manifolds,
as a functor from the category of 3-dimensional manifolds with parametrized
boundary, satisfying some additional conditions, to an algebraic-combinatorial
category. It is built together with its truncations with respect to a natural
grading, and we prove that these TQFTs are non-degenerate and anomaly-free. The
TQFT(s) induce(s) a (series of) representation(s) of a subgroup of
the Mapping Class Group that contains the Torelli group. The N=1 truncation
produces a TQFT for the Casson-Walker-Lescop invariant.Comment: 28 pages, 13 postscript figures. Version 2 (Section 1 has been
considerably shorten, and section 3 has been slightly shorten, since they
will constitute a separate paper. Section 4, which contained only announce of
results, has been suprimated; it will appear in detail elsewhere.
Consequently some statements have been re-numbered. No mathematical changes
have been made.
First order transition from correlated electron semiconductor to ferromagnetic metal in single crystalline FeSi1-xGex
The phase diagram of FeSi1-xGex, obtained from magnetic, thermal and
transport measurements on single crystals, shows a first-order transition from
a correlated electron semiconductor to a ferromagnetic metal at a critical
concentration, x ~ 0.25. The gap of the insulating phase strongly decreases
with x. The specific heat coefficient appears to track the density of states of
a Kondo insulator. The phase diagram is consistent with a correlation induced
insulator-metal transition in conjunction with disorder on the Si/Ge ligand
site
Kondo effect and anti-ferromagnetic correlation in transport through tunneling-coupled double quantum dots
We propose to study the transport through tunneling-coupled double quantum
dots (DQDs) connected in series to leads, using the finite- slave-boson mean
field approach developed initially by Kotliar and Ruckenstein [Phys. Rev. Lett.
{\bf 57}, 1362 (1986)]. This approach treats the dot-lead coupling and the
inter-dot tunnelling nonperturbatively at arbitrary Coulomb correlation
, thus allows the anti-ferromagnetic exchange coupling parameter
to appear naturally. We find that, with increasing the inter-dot hopping, the
DQDs manifest three distinct physical scenarios: the Kondo singlet state of
each dot with its adjacent lead, the spin singlet state consisting of local
spins on each dot and the doubly occupied bonding orbital of the coupled dots.
The three states exhibit remarkably distinct behavior in transmission spectrum,
linear and differential conductance and their magnetic-field dependence.
Theoretical predictions agree with numerical renormalization group and Lanczos
calculations, and some of them have been observed in recent experiments.Comment: 5 pages, 5 figures. Physics Review B (Rapid Communication) (in press
Nonequilibrium Kondo Effect in a Multi-level Quantum Dot near singlet-triplet transition
The linear and nonlinear transport through a multi-level lateral quantum dot
connected to two leads is investigated using a generalized finite-
slave-boson mean field approach. For a two-level quantum dot, our calculation
demonstrates a substantial conductance enhancement near the degeneracy point of
the spin singlet and triplet states, a non-monotonic temperature-dependence of
conductance and a sharp dip and nonzero bias maximum of the differential
conductance. These agree well with recent experiment observations. This
two-stage Kondo effect in an out-of-equilibrium situation is attributed to the
interference between the two energy levels.Comment: 4 pages, 3 figure
- …