287 research outputs found
Correspondence between theory and practice of a Beerkan infiltration experiment
The Beerkan infiltration experiment is carried out by inserting the ring a short depth into the soil and establishing a positive head of water on the infiltration surface for at least a part of the run. Nevertheless, the data are analyzed by assuming a fully unconfined infiltration process (ring insertion depth, d = 0 cm) and a null ponded depth of water (H = 0 cm). The influence of ring insertion and ponded water on an infiltration process of 2 h sampled every minute was tested in this numerical investigation. Five soils varying from sand to silt loam, three ring radii (5â15 cm), and the Beerkan-specific range of values for both d and H (between 0 and 1 cm) were considered. The differences between the theoretical (d = H = 0 cm) and the practical (d = H = 1 cm) setups varied from â10.4 to +8.6% for the mean infiltration rate and from â10.2 to +8.3% for the final cumulative infiltration. These differences were small, and they decreased in absolute value by considering a soil-dependent ring radius. In particular, nearly negligible differences were detected using a small ring in coarse-textured soils and a large ring in fine-textured soils. In the coarser soils, inserting the ring and establishing a ponded depth of water did not alter the estimated coefficients of the two-parameter infiltration model appreciably with the cumulative linearization method, because these coefficients differed between the theoretical and practical setups by no more than 9.2%. In fine soils, linearization could not be possible regardless of the considered setup, or it was the use of d = H = 1 cm instead of d = H = 0 cm that impeded a convincing linearization of the data. In conclusion, the good correspondence, in many circumstances, between the theoretical and the practical Beerkan infiltration experiment reinforced the interest in this simple experiment as a practical means to collect infiltration data in the field
Temperature dependence of binary and ternary recombination of D-3(+) ions with electrons
Flowing and stationary afterglow experiments were performed to study the recombination of D-3(+) ions with electrons at temperatures from 77 to 300 K. A linear dependence of apparent (effective) binary recombination rate coefficients on the pressure of the helium buffer gas was observed. Binary (D-3(+)+e(-)) and ternary (D-3(+)+e(-)+He) recombination rate coefficients were derived. The obtained binary rate coefficient agrees with recent theoretical values for dissociative recombination of D-3(+). We describe the observed ternary process by a mechanism with two rate determining steps. In the first step, a rotationally excited long-lived neutral D-3* is formed in D-3(+)-e(-) collisions. As the second step, the D-3* collides with a helium atom that prevents autoionization of D-3*. We calculate lifetimes of D-3* formed from ortho-, para-, or metastates of D-3(+) and use the lifetimes to calculate ternary recombination rate coefficients
Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential
We address a two-dimensional nonlinear elliptic problem with a
finite-amplitude periodic potential. For a class of separable symmetric
potentials, we study the bifurcation of the first band gap in the spectrum of
the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to
describe this bifurcation. The coupled-mode equations are derived by the
rigorous analysis based on the Fourier--Bloch decomposition and the Implicit
Function Theorem in the space of bounded continuous functions vanishing at
infinity. Persistence of reversible localized solutions, called gap solitons,
beyond the coupled-mode equations is proved under a non-degeneracy assumption
on the kernel of the linearization operator. Various branches of reversible
localized solutions are classified numerically in the framework of the
coupled-mode equations and convergence of the approximation error is verified.
Error estimates on the time-dependent solutions of the Gross--Pitaevskii
equation and the coupled-mode equations are obtained for a finite-time
interval.Comment: 32 pages, 16 figure
Temperature dependence of binary and ternary recombination of H3+ ions with electron
We study binary and the recently discovered process of ternary He-assisted
recombination of H3+ ions with electrons in a low temperature afterglow plasma.
The experiments are carried out over a broad range of pressures and
temperatures of an afterglow plasma in a helium buffer gas. Binary and
He-assisted ternary recombination are observed and the corresponding
recombination rate coefficients are extracted for temperatures from 77 K to 330
K. We describe the observed ternary recombination as a two-step mechanism:
First, a rotationally-excited long-lived neutral molecule H3* is formed in
electron-H3+ collisions. Second, the H3* molecule collides with a helium atom
that leads to the formation of a very long-lived Rydberg state with high
orbital momentum. We present calculations of the lifetimes of H3* and of the
ternary recombination rate coefficients for para and ortho-H3+. The
calculations show a large difference between the ternary recombination rate
coefficients of ortho- and para-H3+ at temperatures below 300 K. The measured
binary and ternary rate coefficients are in reasonable agreement with the
calculated values.Comment: 15 page
Temperature dependence of binary and ternary recombination of H3+ ions with electron
We study binary and the recently discovered process of ternary He-assisted
recombination of H3+ ions with electrons in a low temperature afterglow plasma.
The experiments are carried out over a broad range of pressures and
temperatures of an afterglow plasma in a helium buffer gas. Binary and
He-assisted ternary recombination are observed and the corresponding
recombination rate coefficients are extracted for temperatures from 77 K to 330
K. We describe the observed ternary recombination as a two-step mechanism:
First, a rotationally-excited long-lived neutral molecule H3* is formed in
electron-H3+ collisions. Second, the H3* molecule collides with a helium atom
that leads to the formation of a very long-lived Rydberg state with high
orbital momentum. We present calculations of the lifetimes of H3* and of the
ternary recombination rate coefficients for para and ortho-H3+. The
calculations show a large difference between the ternary recombination rate
coefficients of ortho- and para-H3+ at temperatures below 300 K. The measured
binary and ternary rate coefficients are in reasonable agreement with the
calculated values.Comment: 15 page
A comparison of the neuroprotective efficacy of newly developed oximes (K117, K127) and currently available oxime (obidoxime) in tabun-poisoned rats
The potency of newly developed bispyridinium compounds (K117, K127) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with currently available oxime (obidoxime) using functional observational battery. The neuroprotective effects of atropine alone and atropine combined with one of three bispyridinium oximes (K117, K127, obidoxime) on rats poisoned with tabun at a sublethal dose (180 ÎŒg/kg i.m.; 80% of LD50 value) were studied. Tabun-induced neurotoxicity was monitored using a functional observational battery and automatic measurement of motor activity at 24 h following tabun challenge. The results indicated that all tested oximes combined with atropine enabled tabun-poisoned rats to survive 24 h following tabun challenge while one tabun-poisoned rats died within 24 h after tabun poisoning when the rats were treated with atropine alone. Newly developed oxime K127 combined with atropine was the most effective in decreasing tabun-induced neurotoxicity in the case of sublethal poisonings among all oximes tested. Nevertheless, the differences of neuroprotective efficacy between K127 and obidoxime are not sufficient to replace obidoxime by K127 for the treatment of acute tabun poisonings
Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes
We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
- âŠ