149 research outputs found
Occupational exposure to blood and body fluids among health-care workers in Serbia
© 2014 S. Karger AG, Basel. Objectives: The aim of this study was to examine the epidemiology of occupational accidents and self-reported attitude of health-care workers (HCWs) in Serbia. Subjects and Methods: A cross-sectional study was conducted among HCWs in selected departments of five tertiary care hospitals and in one secondary care hospital in February 2012. A previously developed self-administered questionnaire was provided to HCWs who had direct daily contact with patients. χ2 test and Student's t test were used for statistical analysis of the data. Results: Of the 1,441 potential participants, 983 (68.2%) completed the questionnaire: 655 (66.7%) were nurses/medical technicians, 243 (24.7%) were physicians and 85 (8.6%) were other personnel. Of the 983 participants, 291 (29.6%) HCWs had had at least one accident during the previous year and 106 (40.2%) of them reported it to the responsible person. The highest prevalence (68.6%) of accidents was among nurses/technicians (p = 0.001). Accidents occurred more often in large clinical centers (81.1%; p < 0.001) and in the clinical ward, intensive care unit and operating theater (p = 0.003) than in other departments. Seventy-six (13.1%) nurses/medical technicians had an accident during needle recapping (p < 0.001). Of all the HCWs, 550 (55.9%) were fully vaccinated, including significantly more doctors (154, 63.4%) than participants from other job categories (p < 0.001). Conclusion: There was a relatively high rate of accidents among HCWs in our hospitals, most commonly amongst nurses and staff working in clinical wards, intensive care units and operating theaters. The most common types of accidents were needlestick injuries and accidents due to improper handling of contaminated sharp devices or occuring while cleaning instruments or by coming into contact with blood through damaged skin or through the conjunctiva/mucous membranes
Antimicrobial use in European acute care hospitals: results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017
Antimicrobial agents used to treat infections are life-saving. Overuse may result in more frequent adverse effects and emergence of multidrug-resistant microorganisms. In 2016-17, we performed the second point-prevalence survey (PPS) of healthcare-associated infections (HAIs) and antimicrobial use in European acute care hospitals. We included 1,209 hospitals and 310,755 patients in 28 of 31 European Union/European Economic Area (EU/EEA) countries. The weighted prevalence of antimicrobial use in the EU/EEA was 30.5% (95% CI: 29.2-31.9%). The most common indication for prescribing antimicrobials was treatment of a community-acquired infection, followed by treatment of HAI and surgical prophylaxis. Over half (54.2%) of antimicrobials for surgical prophylaxis were prescribed for more than 1 day. The most common infections treated by antimicrobials were respiratory tract infections and the most commonly prescribed antimicrobial agents were penicillins with beta-lactamase inhibitors. There was wide variation of patients on antimicrobials, in the selection of antimicrobial agents and in antimicrobial stewardship resources and activities across the participating countries. The results of the PPS provide detailed information on antimicrobial use in European acute care hospitals, enable comparisons between countries and hospitals, and highlight key areas for national and European action that will support efforts towards prudent use of antimicrobials
Folding-competent and folding-defective forms of Ricin A chain have different fates following retrotranslocation from the endoplasmic reticulum
We report that a toxic polypeptide retaining the potential to refold upon dislocation from the endoplasmic reticulum (ER)
to the cytosol (ricin A chain; RTA) and a misfolded version that cannot (termed RTAΔ), follow ER-associated degradation
(ERAD) pathways in Saccharomyces cerevisiae that substantially diverge in the cytosol. Both polypeptides are dislocated
in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex and subsequently degraded. Canonical
polyubiquitylation is not a prerequisite for this interaction because a catalytically inactive Hrd1p E3 ubiquitin ligase
retains the ability to retrotranslocate RTA, and variants lacking one or both endogenous lysyl residues also require the
Hrd1p complex. In the case of native RTA, we established that dislocation also depends on other components of the
classical ERAD-L pathway as well as an ongoing ER–Golgi transport. However, the dislocation pathways deviate
strikingly upon entry into the cytosol. Here, the CDC48 complex is required only for RTAΔ, although the involvement of
individual ATPases (Rpt proteins) in the 19S regulatory particle (RP) of the proteasome, and the 20S catalytic chamber
itself, is very different for the two RTA variants. We conclude that cytosolic ERAD components, particularly the
proteasome RP, can discriminate between structural features of the same substrate
Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway
Terminally misfolded proteins are selectively recognized and cleared by the endoplasmic reticulum-associated degradation (ERAD) pathway. SEL1L, a component of the ERAD machinery, plays an important role in selecting and transporting ERAD substrates for degradation. We have determined the crystal structure of the mouse SEL1L central domain comprising five Sel1-Like Repeats (SLR motifs 5 to 9; hereafter called SEL1Lcent). Strikingly, SEL1Lcent forms a homodimer with two-fold symmetry in a head-to-tail manner. Particularly, the SLR motif 9 plays an important role in dimer formation by adopting a domain-swapped structure and providing an extensive dimeric interface. We identified that the full-length SEL1L forms a self-oligomer through the SEL1Lcent domain in mammalian cells. Furthermore, we discovered that the SLR-C, comprising SLR motifs 10 and 11, of SEL1L directly interacts with the N-terminus luminal loops of HRD1. Therefore, we propose that certain SLR motifs of SEL1L play a unique role in membrane bound ERAD machinery.ope
Renal hemodynamics in diabetic kidney disease:Relevance for intervention
The biphasic pattern of glomerular filtration rate over time has long since supported a pathogenetic role of glomerular hypertension and hyperfiltration in the progressive renal damage of diabetes [1]. It is driven by intertwined effects of deranged glycemia and deranged sodium and volume status and is associated with an increased renal as well as cardiovascular risk. A milder early phenotype of hyperfiltration is present even in the absence of diabetes, in association with overweight, central body fat distribution, and high sodium intake, suggesting that drivers of end-organ damage are present decades before onset of diabetes as such, paving the way for overt organ damage later on. It provides a target for pharmacological intervention by older and new classes of drugs, as well as for lifestyle measures, namely, achievement of a healthy body weight, and avoiding sodium excess, throughout the course of development of diabetes and its complications
sel-11 and cdc-42, Two Negative Modulators of LIN-12/Notch Activity in C. elegans
Background: LIN-12/Notch signaling is important for cell-cell interactions during development, and mutations resulting in constitutive LIN-12/Notch signaling can cause cancer. Loss of negative regulators of lin-12/Notch activity has the potential for influencing cell fate decisions during development and the genesis or aggressiveness of cancer. Methodology/Principal Findings: We describe two negative modulators of lin-12 activity in C. elegans. One gene, sel-11, was initially defined as a suppressor of a lin-12 hypomorphic allele; the other gene, cdc-42, is a well-studied Rho GTPase. Here, we show that SEL-11 corresponds to yeast Hrd1p and mammalian Synoviolin. We also show that cdc-42 has the genetic properties consistent with negative regulation of lin-12 activity during vulval precursor cell fate specification. Conclusions/Significance: Our results underscore the multiplicity of negative regulatory mechanisms that impact on lin-12/ Notch activity and suggest novel mechanisms by which constitutive lin-12/Notch activity might be exacerbated in cancer
Biology and conservation of freshwater bivalves : past, present and future perspectives
Freshwater bivalves have been highly
threatened by human activities, and recently their
global decline has been causing conservational and
social concern. In this paper, we review the most
important research events in freshwater bivalve biology
calling attention to the main scientific achievements.
A great bias exists in the research effort, with
much more information available for bivalve species
belonging to the Unionida in comparison to other
groups. The same is true for the origin of these studies,
since the publishing pattern does not always correspond
to the hotspots of biodiversity but is concentrated in the northern hemisphere mainly in
North America, Europe and Russia, with regions such
as Africa and Southeast Asia being quite understudied.
We also summarize information about past, present
and future perspectives concerning the most important
research topics that include taxonomy, systematics,
anatomy, physiology, ecology and conservation of
freshwater bivalves. Finally, we introduce the articles
published in this Hydrobiologia special issue related
with the International Meeting on Biology and Conservation
of Freshwater Bivalves held in 2012 in
Braganc¸a, Portugal.We would like to express our gratitude to our sponsors and institutions, especially to the Polytechnic Institute of Braganca for all the logistic support. We acknowledge all keynote speakers, authors, session chairpersons and especially to all attendees whose contributions were fundamental for the success of this meeting. We would also like to thank all referees of this special issue and to Koen Martens, Editor-in-Chief of Hydrobiologia, for all the valuable comments and suggestions. The chronogram was built with the help of the expert opinion of fellow colleagues Rafael Araujo, Arthur Bogan, Kevin Cummings, Dan Graf, Wendell Haag, Karl-Otto Nagel and David Strayer to whom we are very grateful. The authors acknowledge the support provided by Portuguese Foundation for Science and Technology (FCT) and COMPETE funds-projects CONBI (Contract: PTDC/AAC-AMB/117688/2010) and ECO-IAS (Contract: PTDC/AAC-AMB/116685/2010), and by the European Regional Development Fund (ERDF) through the COMPETE, under the project "PEst-C/MAR/LA0015/2011"
Protein quality control: the who’s who, the where’s and therapeutic escapes
In cells the quality of newly synthesized proteins is monitored in regard to proper folding and correct assembly in the early secretory pathway, the cytosol and the nucleoplasm. Proteins recognized as non-native in the ER will be removed and degraded by a process termed ERAD. ERAD of aberrant proteins is accompanied by various changes of cellular organelles and results in protein folding diseases. This review focuses on how the immunocytochemical labeling and electron microscopic analyses have helped to disclose the in situ subcellular distribution pattern of some of the key machinery proteins of the cellular protein quality control, the organelle changes due to the presence of misfolded proteins, and the efficiency of synthetic chaperones to rescue disease-causing trafficking defects of aberrant proteins
- …