289 research outputs found

    Prediction Possibility in the Fractal Overlap Model of Earthquakes

    Full text link
    The two-fractal overlap model of earthquake shows that the contact area distribution of two fractal surfaces follows power law decay in many cases and this agrees with the Guttenberg-Richter power law. Here, we attempt to predict the large events (earthquakes) in this model through the overlap time-series analysis. Taking only the Cantor sets, the overlap sizes (contact areas) are noted when one Cantor set moves over the other with uniform velocity. This gives a time series containing different overlap sizes. Our numerical study here shows that the cumulative overlap size grows almost linearly with time and when the overlapsizes are added up to a pre-assigned large event (earthquake) and then reset to `zero' level, the corresponding cumulative overlap sizes grows upto some discrete (quantised) levels. This observation should help to predict the possibility of `large events' in this (overlap) time series.Comment: 6 pages, 6 figures. To be published as proc. NATO conf. CMDS-10, Soresh, Israel, July 2003. Eds. D. J. Bergman & E. Inan, KLUWER PUB

    Earthquake statistics and fractal faults

    Full text link
    We introduce a Self-affine Asperity Model (SAM) for the seismicity that mimics the fault friction by means of two fractional Brownian profiles (fBm) that slide one over the other. An earthquake occurs when there is an overlap of the two profiles representing the two fault faces and its energy is assumed proportional to the overlap surface. The SAM exhibits the Gutenberg-Richter law with an exponent β\beta related to the roughness index of the profiles. Apart from being analytically treatable, the model exhibits a non-trivial clustering in the spatio-temporal distribution of epicenters that strongly resembles the experimentally observed one. A generalized and more realistic version of the model exhibits the Omori scaling for the distribution of the aftershocks. The SAM lies in a different perspective with respect to usual models for seismicity. In this case, in fact, the critical behaviour is not Self-Organized but stems from the fractal geometry of the faults, which, on its turn, is supposed to arise as a consequence of geological processes on very long time scales with respect to the seismic dynamics. The explicit introduction of the fault geometry, as an active element of this complex phenomenology, represents the real novelty of our approach.Comment: 40 pages (Tex file plus 8 postscript figures), LaTeX, submitted to Phys. Rev.
    corecore