11 research outputs found
Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning
Exploration in multi-agent reinforcement learning is a challenging problem,
especially in environments with sparse rewards. We propose a general method for
efficient exploration by sharing experience amongst agents. Our proposed
algorithm, called Shared Experience Actor-Critic (SEAC), applies experience
sharing in an actor-critic framework. We evaluate SEAC in a collection of
sparse-reward multi-agent environments and find that it consistently
outperforms two baselines and two state-of-the-art algorithms by learning in
fewer steps and converging to higher returns. In some harder environments,
experience sharing makes the difference between learning to solve the task and
not learning at all.Comment: 34th Conference on Neural Information Processing Systems (NeurIPS
2020), Vancouver, Canad
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
This work focuses on equilibrium selection in no-conflict multi-agent games,
where we specifically study the problem of selecting a Pareto-optimal
equilibrium among several existing equilibria. It has been shown that many
state-of-the-art multi-agent reinforcement learning (MARL) algorithms are prone
to converging to Pareto-dominated equilibria due to the uncertainty each agent
has about the policy of the other agents during training. To address
sub-optimal equilibrium selection, we propose Pareto Actor-Critic (Pareto-AC),
which is an actor-critic algorithm that utilises a simple property of
no-conflict games (a superset of cooperative games): the Pareto-optimal
equilibrium in a no-conflict game maximises the returns of all agents and
therefore is the preferred outcome for all agents. We evaluate Pareto-AC in a
diverse set of multi-agent games and show that it converges to higher episodic
returns compared to seven state-of-the-art MARL algorithms and that it
successfully converges to a Pareto-optimal equilibrium in a range of matrix
games. Finally, we propose PACDCG, a graph neural network extension of
Pareto-AC which is shown to efficiently scale in games with a large number of
agents.Comment: 20 pages, 12 figure
Learning Task Embeddings for Teamwork Adaptation in Multi-Agent Reinforcement Learning
Successful deployment of multi-agent reinforcement learning often requires
agents to adapt their behaviour. In this work, we discuss the problem of
teamwork adaptation in which a team of agents needs to adapt their policies to
solve novel tasks with limited fine-tuning. Motivated by the intuition that
agents need to be able to identify and distinguish tasks in order to adapt
their behaviour to the current task, we propose to learn multi-agent task
embeddings (MATE). These task embeddings are trained using an encoder-decoder
architecture optimised for reconstruction of the transition and reward
functions which uniquely identify tasks. We show that a team of agents is able
to adapt to novel tasks when provided with task embeddings. We propose three
MATE training paradigms: independent MATE, centralised MATE, and mixed MATE
which vary in the information used for the task encoding. We show that the
embeddings learned by MATE identify tasks and provide useful information which
agents leverage during adaptation to novel tasks.Comment: To be presented at the Seventh Workshop on Generalization in Planning
at the NeurIPS 2023 conferenc
Deep Reinforcement Learning for Multi-Agent Interaction
The development of autonomous agents which can interact with other agents to
accomplish a given task is a core area of research in artificial intelligence
and machine learning. Towards this goal, the Autonomous Agents Research Group
develops novel machine learning algorithms for autonomous systems control, with
a specific focus on deep reinforcement learning and multi-agent reinforcement
learning. Research problems include scalable learning of coordinated agent
policies and inter-agent communication; reasoning about the behaviours, goals,
and composition of other agents from limited observations; and sample-efficient
learning based on intrinsic motivation, curriculum learning, causal inference,
and representation learning. This article provides a broad overview of the
ongoing research portfolio of the group and discusses open problems for future
directions.Comment: Published in AI Communications Special Issue on Multi-Agent Systems
Research in the U