66 research outputs found
Propagation of Light in the Field of Stationary and Radiative Gravitational Multipoles
Extremely high precision of near-future radio/optical interferometric
observatories like SKA, Gaia, SIM and the unparalleled sensitivity of LIGO/LISA
gravitational-wave detectors demands more deep theoretical treatment of
relativistic effects in the propagation of electromagnetic signals through
variable gravitational fields of the solar system, oscillating and precessing
neutron stars, coalescing binary systems, exploding supernova, and colliding
galaxies. Especially important for future gravitational-wave observatories is
the problem of propagation of light rays in the field of multipolar
gravitational waves emitted by a localized source of gravitational radiation.
Present paper suggests physically-adequate and consistent mathematical solution
of this problem in the first post-Minkowskian approximation of General
Relativity which accounts for all time-dependent multipole moments of an
isolated astronomical system.Comment: 36 pages, no figure
Measuring Which-Path Information with Coupled Electronic Mach-Zehnder Interferometers
We theoretically investigate a generalized "which-path" measurement on an
electronic Mach-Zehnder Interferometer (MZI) implemented via Coulomb coupling
to a second electronic MZI acting as a detector. The use of contextual values,
or generalized eigenvalues, enables the precise construction of which-path
operator averages that are valid for any measurement strength from the
available drain currents. The form of the contextual values provides direct
physical insight about the measurement being performed, providing information
about the correlation strength between system and detector, the measurement
inefficiency, and the proper background removal. We find that the detector
interferometer must display maximal wave-like behavior to optimally measure the
particle-like which-path information in the system interferometer,
demonstrating wave-particle complementarity between the system and detector. We
also find that the degree of quantum erasure that can be achieved by
conditioning on a specific detector drain is directly related to the ambiguity
of the measurement. Finally, conditioning the which-path averages on a
particular system drain using the zero frequency cross-correlations produces
conditioned averages that can become anomalously large due to quantum
interference; the weak coupling limit of these conditioned averages can produce
both weak values and detector-dependent semi-weak values.Comment: 17 pages, 12 figures, published version including appendi
Optomechanical cooling of levitated spheres with doubly-resonant fields
Optomechanical cooling of levitated dielectric particles represents a
promising new approach in the quest to cool small mechanical resonators towards
their quantum ground state. We investigate two-mode cooling of levitated
nanospheres in a self-trapping regime. We identify a rich structure of split
sidebands (by a mechanism unrelated to usual strong-coupling effects) and
strong cooling even when one mode is blue detuned. We show the best regimes
occur when both optical fields cooperatively cool and trap the nanosphere,
where cooling rates are over an order of magnitude faster compared to
corresponding single-sideband cooling rates.Comment: 8 Pages, 7 figure
Cooling of a mirror by radiation pressure
We describe an experiment in which a mirror is cooled by the radiation
pressure of light. A high-finesse optical cavity with a mirror coated on a
mechanical resonator is used as an optomechanical sensor of the Brownian motion
of the mirror. A feedback mechanism controls this motion via the radiation
pressure of a laser beam reflected on the mirror. We have observed either a
cooling or a heating of the mirror, depending on the gain of the feedback loop.Comment: 4 pages, 6 figures, RevTe
Simultaneous readout of two charge qubits
We consider a system of two solid state charge qubits, coupled to a single
read-out device, consisting of a single-electron transistor (SET). The
conductance of each tunnel junction is influenced by its neighboring qubit, and
thus the current through the transistor is determined by the qubits' state. The
full counting statistics of the electrons passing the transistor is calculated,
and we discuss qubit dephasing, as well as the quantum efficiency of the
readout. The current measurement is then compared to readout using real-time
detection of the SET island's charge state. For the latter method we show that
the quantum efficiency is always unity. Comparing the two methods a simple
geometrical interpretation of the quantum efficiency of the current measurement
appears. Finally, we note that full quantum efficiency in some cases can be
achieved measuring the average charge of the SET island, in addition to the
average current.Comment: 11 pages with 5 figure
Universal detector efficiency of a mesoscopic capacitor
We investigate theoretically a novel type of high frequency quantum detector
based on the mesoscopic capacitor recently realized by Gabelli et al., [Science
{\bf 313}, 499 (2006)], which consists of a quantum dot connected via a single
channel quantum point contact to a single lead. We show that the state of a
double quantum dot charge qubit capacitively coupled to this detector can be
read out in the GHz frequency regime with near quantum limited efficiency. To
leading order, the quantum efficiency is found to be universal owing to the
universality of the charge relaxation resistance of the mesoscopic capacitor.Comment: 4 pages, 2 figures, submitted to PR
Tensor polarizability and dispersive quantum measurement of multilevel atoms
Optimally extracting information from measurements performed on a physical
system requires an accurate model of the measurement interaction. Continuously
probing the collective spin of an Alkali atom cloud via its interaction with an
off-resonant optical probe is an important example of such a measurement where
realistic modeling at the quantum level is possible using standard techniques
from atomic physics. Typically, however, tutorial descriptions of this
technique have neglected the multilevel structure of realistic atoms for the
sake of simplification. In this paper we account for the full multilevel
structure of Alkali atoms and derive the irreducible form of the polarizability
Hamiltonian describing a typical dispersive quantum measurement. For a specific
set of parameters, we then show that semiclassical predictions of the theory
are consistent with our experimental observations of polarization scattering by
a polarized cloud of laser-cooled Cesium atoms. We also derive the
signal-to-noise ratio under a single measurement trial and use this to predict
the rate of spin-squeezing with multilevel Alkali atoms for arbitrary detuning
of the probe beam.Comment: Significant corrections to theory and data. Full quality figures and
other information available from http://minty.caltech.edu/papers.ph
Quantum limits in interferometric measurements
Quantum noise limits the sensitivity of interferometric measurements. It is
generally admitted that it leads to an ultimate sensitivity, the ``standard
quantum limit''. Using a semi-classical analysis of quantum noise, we show that
a judicious use of squeezed states allows one in principle to push the
sensitivity beyond this limit. This general method could be applied to large
scale interferometers designed for gravitational wave detection.Comment: 4 page
Practical quantum metrology with large precision gains in the low photon number regime
Quantum metrology exploits quantum correlations to make precise measurements with limited particle numbers. By utilizing inter- and intra- mode correlations in an optical interferometer, we find a state that combines entanglement and squeezing to give a 7-fold enhancement in the quantum Fisher information (QFI) - a metric related to the precision - over the shot noise limit, for low photon numbers. Motivated by practicality we then look at the squeezed cat-state, which has recently been made experimentally, and shows further precision gains over the shot noise limit and a 3-fold improvement in the QFI over the optimal Gaussian state. We present a conceptually simple measurement scheme that saturates the QFI, and we demonstrate a robustness to loss for small photon numbers. The squeezed cat-state can therefore give a significant precision enhancement in optical quantum metrology in practical and realistic conditions
- …