212 research outputs found

    CFD analysis of coolant mixing in VVER-1000/V320 reactor pressure vessel

    Get PDF
    This study presents a code-to-code and model-to-model comparison of coolant mixing in the VVER-1000/V320 Kozloduy Unit 6 nuclear power plant using Computational Fluid Dynamics (CFD). Four different CFD codes were used to simulate coolant mixing in the reactor vessel, namely ANSYS Fluent, ANSYS CFX, TrioCFD, and STAR-CCM+. Two different approaches were used to model the upper plenum, while a single simplified model was used for the reactor pressure vessel. The simulations were performed for VVER-1000 coolant transient benchmark (V1000CT-2) mixing exercise. The results were compared between the different CFD codes and models to assess the accuracy and consistency of the simulations with the available experimental data. Overall, the results showed good agreement between the different CFD codes and models, with minor differences observed in some cases. The simplified models were found to be sufficient for predicting the overall coolant mixing patterns observed in the reactor vessel, provided additional insights into the local flow structures and mixing characteristics. This study demonstrates the applicability and reliability of CFD simulations for coolant mixing analysis in VVER-1000/V320 nuclear power plants

    Primary liver cancer is more aggressive in HIV-HCV coinfection than in HCV infection. A prospective study (ANRS CO13 Hepavih and CO12 Cirvir)

    Get PDF
    OBJECTIVE: Since HAART, primary liver cancer has emerged as an increasing cause of morbidity and mortality in patients with HIV infection. Our aim was to compare characteristics and outcome of primary liver cancer according to HIV status in HCV cirrhotic patients submitted to periodic ultrasonographic surveillance. METHODS: All patients with primary liver cancer and cirrhosis were selected from two prospective cohorts (ANRS CO12 Cirvir, viral cirrhosis, n=1081; ANRS CO13 Hepavih, HIV-HCV coinfection, n=1175). Cirrhosis was diagnosed by liver biopsy in monoHCV group and biopsy and/or non-invasive tests in HIV-HCV group. Ultrasonographic surveillance was performed every 6 months. Diagnosis of primary liver cancer was established according to EASL-AASLD guidelines. RESULTS: Primary liver cancer was diagnosed in 32 patients, 16 in each group, and corresponded to hepatocellular carcinoma in all except for two cholangiocarcinomas in HIV-HCV patients. Ultrasonographic follow-up was similar (median time since last ultrasonographic without focal lesion: 237 days in HIV-HCV group (n=12) versus 208 days in HCV group, NS). At primary liver cancer diagnosis HIV-HCV patients were markedly younger (48 vs. 60 yrs, P<0.001), primary liver cancer was more advanced in HIV-HCV patients (single nodule: 43% vs. 75%, P=0.07; mean diameter of main nodule: 24 vs. 16 mm, P=0.006; portal obstruction: 3 vs. 0). Curative treatment was performed in four HIV-HCV patients versus 11 HCV patients (P=0.017). During follow-up, 10 HIV-HCV patients died versus only one HCV patient (P=0.0005). CONCLUSIONS: This result suggests more aggressiveness for tumors in HIV infected patients and, if confirmed, could result in shortening the length between ultrasonographic examinations

    The Weaning Index combining EtCO2 and respiratory rate early identifies Spontaneous Breathing trial failure. A pilot study

    Get PDF
    BACKGROUND: We aimed to evaluate the predictive value of the end-tidal CO2 (EtCO2) alone or combined with ventilation related parameters on spontaneous breathing trial (SBT) outcome on mechanically ventilated patients. METHODS: Prospective observational study in a medical ICU. Mechanically ventilated adult patients who met predefined criteria for weaning were included. Patients underwent a T-piece SBT for 30 minutes and the usual hemodynamic and respiratory clinical parameters including EtCO2 were recorded every 5 minutes. RESULTS: 280 patients were studied (age: 64±17 years, SAPS II: 44 [34-56]) during a first SBT and 76 patients during a second SBT. The Weaning Index, defined as the product of the respiratory rate and EtCO2, was a strong early predictive factor of SBT outcome; at 10 minutes, the area under the curve (AUC) was 86% ([80-90], P<0.0001) during the first SBT and 88% ([80-96], P<0.0001) during the second SBT. After 10 minutes of SBT, a Weaning Index >1100 identified patients that will not successfully complete the SBT at 30 minutes with a specificity of 98%. CONCLUSIONS: In unselected mechanically ventilated patients, the Weaning Index is helpful to early identify patients who will fail the SBT during a first and a second trial

    Reversible Microvascular Hyporeactivity to Acetylcholine During Diabetic Ketoacidosis

    Get PDF
    OBJECTIVES: Metabolic acidosis is commonly observed in critically ill patients. Experimental studies suggested that acidosis by itself could impair vascular function, but this has been poorly investigated in human. DESIGN: Prospective observational study. SETTING: Medical ICU in a tertiary teaching hospital. PATIENTS: To assess the relationship between metabolic acidosis severity and microvascular reactivity, we included adult diabetic patients admitted in ICU for ketoacidosis. Microvascular response to acetylcholine iontophoresis was measured at admission (baseline) and after correction of metabolic acidosis (24 hr). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Thirty-nine patients with diabetic ketoacidosis were included (68% male), with a median age of 43 (31-57) years. At admission, microvascular reactivity negatively correlated with acidosis severity (R = -0.53; p < 0.001). Microvascular response was strongly depressed at pH less than 7.20 (area under the curve, 1,779 [740-3,079] vs 12,944 [4,874-21,596] at pH > 7.20; p < 0.0001). In addition, acidosis severity was significantly correlated with capillary refill time (R = 0.50; p = 0.02). At H24, after rehydration and insulin infusion, clinical and biological disorders were fully corrected. After acidosis correction, microvascular reactivity increased more in patients with severe baseline acidosis (pH < 7.20) than in those with mild baseline acidosis (area under the curve, +453% [213%-1,470%] vs +121% [79%-312%]; p < 0.01). CONCLUSIONS: We identified an alteration of microvascular reactivity during metabolic acidosis in critically ill patients with diabetic ketoacidosis. Microvascular hyporeactivity recovered after acidosis correction

    Modulation of RNA splicing enhances response to BCL2 inhibition in leukemia.

    Get PDF
    Therapy resistance is a major challenge in the treatment of cancer. Here, we performed CRISPR-Cas9 screens across a broad range of therapies used in acute myeloid leukemia to identify genomic determinants of drug response. Our screens uncover a selective dependency on RNA splicing factors whose loss preferentially enhances response to the BCL2 inhibitor venetoclax. Loss of the splicing factor RBM10 augments response to venetoclax in leukemia yet is completely dispensable for normal hematopoiesis. Combined RBM10 and BCL2 inhibition leads to mis-splicing and inactivation of the inhibitor of apoptosis XIAP and downregulation of BCL2A1, an anti-apoptotic protein implicated in venetoclax resistance. Inhibition of splicing kinase families CLKs (CDC-like kinases) and DYRKs (dual-specificity tyrosine-regulated kinases) leads to aberrant splicing of key splicing and apoptotic factors that synergize with venetoclax, and overcomes resistance to BCL2 inhibition. Our findings underscore the importance of splicing in modulating response to therapies and provide a strategy to improve venetoclax-based treatments

    A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells

    Get PDF
    Human exposure to carcinogens occurs via a plethora of environmental sources, with 70–90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens’ adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention

    Decline in subarachnoid haemorrhage volumes associated with the first wave of the COVID-19 pandemic

    Get PDF
    BACKGROUND: During the COVID-19 pandemic, decreased volumes of stroke admissions and mechanical thrombectomy were reported. The study\u27s objective was to examine whether subarachnoid haemorrhage (SAH) hospitalisations and ruptured aneurysm coiling interventions demonstrated similar declines. METHODS: We conducted a cross-sectional, retrospective, observational study across 6 continents, 37 countries and 140 comprehensive stroke centres. Patients with the diagnosis of SAH, aneurysmal SAH, ruptured aneurysm coiling interventions and COVID-19 were identified by prospective aneurysm databases or by International Classification of Diseases, 10th Revision, codes. The 3-month cumulative volume, monthly volumes for SAH hospitalisations and ruptured aneurysm coiling procedures were compared for the period before (1 year and immediately before) and during the pandemic, defined as 1 March-31 May 2020. The prior 1-year control period (1 March-31 May 2019) was obtained to account for seasonal variation. FINDINGS: There was a significant decline in SAH hospitalisations, with 2044 admissions in the 3 months immediately before and 1585 admissions during the pandemic, representing a relative decline of 22.5% (95% CI -24.3% to -20.7%, p\u3c0.0001). Embolisation of ruptured aneurysms declined with 1170-1035 procedures, respectively, representing an 11.5% (95%CI -13.5% to -9.8%, p=0.002) relative drop. Subgroup analysis was noted for aneurysmal SAH hospitalisation decline from 834 to 626 hospitalisations, a 24.9% relative decline (95% CI -28.0% to -22.1%, p\u3c0.0001). A relative increase in ruptured aneurysm coiling was noted in low coiling volume hospitals of 41.1% (95% CI 32.3% to 50.6%, p=0.008) despite a decrease in SAH admissions in this tertile. INTERPRETATION: There was a relative decrease in the volume of SAH hospitalisations, aneurysmal SAH hospitalisations and ruptured aneurysm embolisations during the COVID-19 pandemic. These findings in SAH are consistent with a decrease in other emergencies, such as stroke and myocardial infarction
    corecore