462 research outputs found
Towards a gauge-polyvalent Numerical Relativity code
The gauge polyvalence of a new numerical code is tested, both in
harmonic-coordinate simulations (gauge-waves testbed) and in
singularity-avoiding coordinates (simple Black-Hole simulations, either with or
without shift). The code is built upon an adjusted first-order
flux-conservative version of the Z4 formalism and a recently proposed family of
robust finite-difference high-resolution algorithms. An outstanding result is
the long-term evolution (up to 1000M) of a Black-Hole in normal coordinates
(zero shift) without excision.Comment: to appear in Physical Review
Conceptual aspects of line tensions
We analyze two representative systems containing a three-phase-contact line:
a liquid lens at a fluid--fluid interface and a liquid drop in contact with a
gas phase residing on a solid substrate. We discuss to which extent the
decomposition of the grand canonical free energy of such systems into volume,
surface, and line contributions is unique in spite of the freedom one has in
positioning the Gibbs dividing interfaces. In the case of a lens it is found
that the line tension is independent of arbitrary choices of the Gibbs dividing
interfaces. In the case of a drop, however, one arrives at two different
possible definitions of the line tension. One of them corresponds seamlessly to
that applicable to the lens. The line tension defined this way turns out to be
independent of choices of the Gibbs dividing interfaces. In the case of the
second definition,however, the line tension does depend on the choice of the
Gibbs dividing interfaces. We provide equations for the equilibrium contact
angles which are form-invariant with respect to notional shifts of dividing
interfaces which only change the description of the system. Conceptual
consistency requires to introduce additional stiffness constants attributed to
the line. We show how these constants transform as a function of the relative
displacements of the dividing interfaces. The dependences of the contact angles
on lens or drop volumes do not render the line tension alone but a combination
of the line tension, the Tolman length, and the stiffness constants of the
line.Comment: 34 pages, 9 figure
Efficient implementation of finite volume methods in Numerical Relativity
Centered finite volume methods are considered in the context of Numerical
Relativity. A specific formulation is presented, in which third-order space
accuracy is reached by using a piecewise-linear reconstruction. This
formulation can be interpreted as an 'adaptive viscosity' modification of
centered finite difference algorithms. These points are fully confirmed by 1D
black-hole simulations. In the 3D case, evidence is found that the use of a
conformal decomposition is a key ingredient for the robustness of black hole
numerical codes.Comment: Revised version, 10 pages, 6 figures. To appear in Phys. Rev.
Capillary pressure of van der Waals liquid nanodrops
The dependence of the surface tension on a nanodrop radius is important for
the new-phase formation process. It is demonstrated that the famous Tolman
formula is not unique and the size-dependence of the surface tension can
distinct for different systems. The analysis is based on a relationship between
the surface tension and disjoining pressure in nanodrops. It is shown that the
van der Waals interactions do not affect the new-phase formation thermodynamics
since the effect of the disjoining pressure and size-dependent component of the
surface tension cancel each other.Comment: The paper is dedicated to the 80th anniversary of A.I. Rusano
Depairing currents in superconducting films of Nb and amorphous MoGe
We report on measuring the depairing current J_{dp} in thin superconducting
films as a function of temperature. The main difficulties in such measurements
are that heating has to be avoided, either due to contacts, or to vortex flow.
The latter is almost unavoidable since the sample cross-section is usually
larger than the superconducting coherence length \xi_s and the magnetic field
penetration depth \lambda_s. On the other hand, vortex flow is helpful since it
homogenizes the distribution of the current across the sample. We used a pulsed
current method, which allows to overcome the difficulties caused by dissipation
and measured the depairing current in films of thin polycrystalline Nb (low
\lambda_s, low specific resistance \rho) and amorphous Mo_{0.7}Ge_{0.3} (high
\lambda_s, high \rho), structured in the shape of bridges of various width. The
experimental values of J_{dp} for different bridge dimensions are compared with
theoretical predictions by Kupriyanov and Lukichev for dirty limit
superconductors. For the smallest samples we find a very good agreement with
theory, over essentially the whole temperature interval below the
superconducting critical temperature.Comment: 5 pages, 6 figure
Nanoparticles in SiH4-Ar plasma: Modelling and comparison with experimental data
Experimental and theoretical investigations for growth of silicon nanoparticles (4 to 14 nm) in radio frequency discharge were carried out. Growth processes were performed with gas mixtures of SiH4 and Ar in a plasma chemical reactor at low pressure. A distinctive feature of presented kinetic model of generation and growth of nanoparticles (compared to our earlier model) is its ability to investigate small"critical" dimensions of clusters, determining the rate of particle production and taking into account the influence of SiH2 and Si2Hm dimer radicals. The experiments in the present study were extended to high pressure (≥20 Pa) and discharge power (≥40 W). Model calculations were compared to experimental measurements, investigating the dimension of silicon nanoparticles as a function of time, discharge power, gas mixture, total pressure, and gas flow
Anionic lanthanide complexes with 3-methyl-1-phenyl-4-formylpyrazole-5-one and hydroxonium as counter ion
AbstractA series of [H3O]+[LnL4]−·nH2O complexes (n=1–3, Ln=Nd, (1), Sm (2), Eu (3), Tb (4); HL=3-methyl-1-phenyl-4-formylpyrazole-5-one) were synthesized and characterized. The structures of the SmIII and EuIII complexes were investigated by X-ray diffraction. The isostructutal crystalls 2 and 3 consist the tetrakis [LnL4]− anions which are linked by H-bonding with the hydroxonium counter-ion and water molecules. The lanthanide ion is situated in the center of distorted tetragonal antiprism formed by eight oxygen atoms of 4-formyl-5-hydroxypyrazolonate anions. The TbIII and SmIII complexes show strong luminescence in solid state, whereas the EuIII and NdIII complexes show low luminescence activity
M\"ossbauer, nuclear inelastic scattering and density functional studies on the second metastable state of Na2[Fe(CN)5NO]2H2O
The structure of the light-induced metastable state SII of
Na2[Fe(CN)5NO]2H2O 14 was investigated by transmission M\"ossbauer
spectroscopy (TMS) in the temperature range 15 between 85 and 135 K, nuclear
inelastic scattering (NIS) at 98 K using synchrotron 16 radiation and density
functional theory (DFT) calculations. The DFT and TMS results 17 strongly
support the view that the NO group in SII takes a side-on molecular orientation
18 and, further, is dynamically displaced from one eclipsed, via a staggered,
to a second 19 eclipsed orientation. The population conditions for generating
SII are optimal for 20 measurements by TMS, yet they are modest for
accumulating NIS spectra. Optimization 21 of population conditions for NIS
measurements is discussed and new NIS experiments on 22 SII are proposed
- …