10,783 research outputs found

    Managing and Improving Upon Bandwidth Challenges in Computer Network

    Get PDF
    Managing the bandwidth of a computer network is always faced with great challenges. This research was necessitated by the urgent need to manage the University network currently experiencing congestion in both the local LA� and on the internet backhaul with a view to improving network performance and reduce the huge recurrent on the WA� link. However, there exists various ways that have been deployed towards solving these problems. In this paper we examined existing bandwidth management, effect of limited bandwidth on the network performance and profound solutions of techniques that enhanced or improved the bandwidth efficiency. Also, included in this research work are the studies of the effect of limited bandwidth on work load, type of protocol used and the effect of network congestion on the quality of service of a Wide Area �etwork (WA�). By comparison, from the modeling of the effect of work load and limited bandwidth on the throughput of a wide area network based on experimental simulation and real time simulation scenarios, some observations were made and recommendation of solutions were given from the analyzed results

    High power operation of an X-band gyrotwistron

    Get PDF
    We report the first experimental verification of a gyrotwistron amplifier. The device utilized a single 9.858 GHz, TE011 cavity, a heavily attenuated drift tube, and a long tapered output waveguide section. With a 440 kV, 200-245 A, 1 μs electron beam and a sharply tapered axial magnetic field, peak powers above 21 MW were achieved with a gain near 24 dB. Performance was limited by competition from a fundamental TE11 mode. A multimode code was developed to analyze this system, and simulations were in good agreement with the experiment

    Tunneling of a composite particle: Effects of intrinsic structure

    Full text link
    We consider simple models of tunneling of an object with intrinsic degrees of freedom. This important problem was not extensively studied until now, in spite of numerous applications in various areas of physics and astrophysics. We show possibilities of enhancement for the probability of tunneling due to the presence of intrinsic degrees of freedom split by weak external fields or by polarizability of the slow composite object.Comment: 6 pages, 3 figures, version to be published in Journal of Physics

    High-power operation of a K-band second harmonic gyroklystron

    Get PDF
    Amplification studies of a two-cavity second-harmonic gyroklystron are reported. A magnetron injection gun produces a 440 kV, 200–245 A, 1 μs beam with an average perpendicular-to-parallel velocity ratio slightly less than 1. The TE011 input cavity is driven near 9.88 GHz and the TE021 output cavity resonates near 19.76 GHz. Peak powers exceeding 21 MW are achieved with an efficiency near 21% and a large signal gain above 25 dB. This performance represents the current state of the art for gyroklystrons in terms of the peak power normalized to the output wavelength squared

    High-Redshift Dust Obscured Galaxies: A Morphology-Spectral Energy Distribution Connection Revealed by Keck Adaptive Optics

    Get PDF
    A simple optical to mid-IR color selection, R – [24]>14, i.e., f_ν(24 μm)/f_ν(R) ≳ 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z ~ 2 ± 0.5. Extreme mid-IR luminosities (L_(IR) > 10^(12-14)) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0."05-0."1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of ~1 kpc, circumstantial evidence for ongoing mergers

    Lens Galaxy Properties of SBS1520+530: Insights from Keck Spectroscopy and AO Imaging

    Get PDF
    We report on an investigation of the SBS 1520+530 gravitational lens system and its environment using archival HST imaging, Keck spectroscopic data, and Keck adaptive-optics imaging. The AO imaging has allowed us to fix the lens galaxy properties with a high degree of precision when performing the lens modeling, and the data indicate that the lens has an elliptical morphology and perhaps a disk. The new spectroscopic data suggest that previous determinations of the lens redshift may be incorrect, and we report an updated, though inconclusive, value z_lens = 0.761. We have also spectroscopically confirmed the existence of several galaxy groups at approximately the redshift of the lens system. We create new models of the lens system that explicitly account for the environment of the lens, and we also include improved constraints on the lensing galaxy from our adaptive-optics imaging. Lens models created with these new data can be well-fit with a steeper than isothermal mass slope (alpha = 2.29, with the density proportional to r^-alpha) if H_0 is fixed at 72 km/s/Mpc; isothermal models require H_0 ~ 50 km/s/Mpc. The steepened profile may indicate that the lens is in a transient perturbed state caused by interactions with a nearby galaxy.Comment: 12 pages, 10 figures, submitted to Ap

    The Central Laser Facility at the Pierre Auger Observatory

    Full text link
    The Central Laser Facility is located near the middle of the Pierre Auger Observatory in Argentina. It features a UV laser and optics that direct a beam of calibrated pulsed light into the sky. Light scattered from this beam produces tracks in the Auger optical detectors which normally record nitrogen fluorescence tracks from cosmic ray air showers. The Central Laser Facility provides a "test beam" to investigate properties of the atmosphere and the fluorescence detectors. The laser can send light via optical fiber simultaneously to the nearest surface detector tank for hybrid timing analyses. We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
    • …
    corecore