262 research outputs found

    Simulation of daily runoff in Central Asian alpine watersheds

    Get PDF
    A two-component model of fiver runoff simulation in alpine regions of Central Asia has been implemented. The first component was devoted to the estimation of daily water input. The second component converts water input to river runoff hydrograph. The method of water input simulation was based on mean daily air temperature and daily precipitation at a reference meteorological station, and on the distribution of air temperature, precipitation, and watershed area as a function of elevation. The runoff simulation method took into account the water retention capacity of the snow, the amount of refrozen melt water, and the ice melt under glacial moraines. The method of hydrograph derivation was based on single- and two-reservoir models. Calibration and validation of the river runoff simulation model were done for the Oigaing and Ala Archa alpine drainage river basins. The runoff hydrograph generation model was calibrated on the basis of daily data for dry, wet, find normal years. The two-reservoir hydrograph model produced minor improvements in prediction as compared with the single-reservoir runoff hydrograph method. Simulation errors increased with increasing annual fiver runoff and depend on snowmelt, glacier runoff, the amount of precipitation, and air temperature. The simulated river runoff was less than observed values during autumn-winter. In the Ala Archa river basin, where glacier melt is a significant component of river runoff, and in years with large glacier melt, the simulated river runoff underestimated observed values. (C) 2000 Elsevier Science B.V

    Seasonal deuterium excess in a Tien Shan ice core: Influence of moisture transport and recycling in Central Asia

    Get PDF
    Stable water isotope (δ18O, δD) data from a high elevation (5100 masl) ice core recovered from the Tien Shan Mountains, Kyrgyzstan, display a seasonal cycle in deuterium excess (d = δD − 8*δ18O) related to changes in the regional hydrologic cycle during 1994–2000. While there is a strong correlation (r2 = 0.98) between δ18O and δD in the ice core samples, the regression slope (6.9) and mean d value (23.0) are significantly different than the global meteoric water line values. The resulting time-series ice core d profile contains distinct winter maxima and summer minima, with a yearly d amplitude of ∼15–20‰. Local-scale processes that may affect d values preserved in the ice core are not consistent with the observed seasonal variability. Data from Central Asian monitoring sites in the Global Network of Isotopes in Precipitation (GNIP) have similar seasonal d changes. We suggest that regional-scale hydrological conditions, including seasonal changes in moisture source, transport, and recycling in the Caspian/Aral Sea region, are responsible for the observed spatial and temporal d variability

    High altitude accumulation and preserved climate information in the western Pamir, observations from the Fedchenko Glacier accumulation basin

    Get PDF
    Abstract The accumulation region of Fedchenko Glacier represents an extensive snow reservoir in the Pamir Mountains feeding the longest glacier in Central Asia. Observed elevation changes indicate a continuous ice loss in the ablation region of Fedchenko Glacier since 1928, while the mass balance of the accumulation region is largely unknown. In this study, we show that accumulation varies considerably in the main accumulation basin, with accumulation rates up to 2400 mm w.e. a-1 in the West, decreasing to <1000 mm w.e. a-1 in the center, although the elevation difference is <200 m. The combination of snow/firn samples and ground-penetrating radar profiles suggests that this accumulation pattern is persistent during the recent past. The recent accumulation history is reconstructed from internal radar reflectors using a firn densification model and shows strong interannual variations, but near constant mean values since 2002. Modeling of trajectories, based on accumulation and glacier geometry, results in an estimate of the depth/age relation close to the main divide. This region provides one of the most suitable locations for retrieving climate information with temporal high resolution for the last millennium, with a potential to cover most of the Holocene in less detail

    Invasive Mutualists Erode Native Pollination Webs

    Get PDF
    Plant–animal mutualisms are characterized by weak or asymmetric mutual dependences between interacting species, a feature that could increase community stability. If invasive species integrate into mutualistic webs, they may alter web structure, with consequences for species persistence. However, the effect of alien mutualists on the architecture of plant–pollinator webs remains largely unexplored. We analyzed the extent of mutual dependency between interacting species, as a measure of mutualism strength, and the connectivity of 10 paired plant–pollinator webs, eight from forests of the southern Andes and two from oceanic islands, with different incidences of alien species. Highly invaded webs exhibited weaker mutualism than less-invaded webs. This potential increase in network stability was the result of a disproportionate increase in the importance and participation of alien species in the most asymmetric interactions. The integration of alien mutualists did not alter overall network connectivity, but links were transferred from generalist native species to super-generalist alien species during invasion. Therefore, connectivity among native species declined in highly invaded webs. These modifications in the structure of pollination webs, due to dominance of alien mutualists, can leave many native species subject to novel ecological and evolutionary dynamics

    Twentieth century dust lows and the weakening of the westerly winds over the Tibetan Plateau

    Get PDF
    Understanding past atmospheric dust variability is necessary to put modern atmospheric dust into historical context and assess the impacts of dust on the climate. In Asia, meteorological data of atmospheric dust is temporally limited, beginning only in the 1950s. High‐resolution ice cores provide the ideal archive for reconstructing preinstrumental atmospheric dust concentrations. Using a ~500 year (1477–1982 A.D.) annually resolved calcium (Ca) dust proxy from a Tibetan Plateau (TP) ice core, we demonstrate the lowest atmospheric dust concentrations in the past ~500 years during the latter twentieth century. Declines in late nineteenth to twentieth century Ca concentrations significantly correspond with regional zonal wind trends from two reanalysis models, suggesting that the Ca record provides a proxy for the westerlies. Twentieth century warming and attendant atmospheric pressure reductions over northern Asia have potentially reduced temperature/pressure gradients resulting in lower zonal wind velocities and associated dust entrainment/transport in the past ~500 years over the TP

    Safeguarding pollinators and their values to human well-being

    Get PDF
    Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.Environmental Biolog

    Spatial and Temporal Trends of Global Pollination Benefit

    Get PDF
    Pollination is a well-studied and at the same time a threatened ecosystem service. A significant part of global crop production depends on or profits from pollination by animals. Using detailed information on global crop yields of 60 pollination dependent or profiting crops, we provide a map of global pollination benefits on a 5′ by 5′ latitude-longitude grid. The current spatial pattern of pollination benefits is only partly correlated with climate variables and the distribution of cropland. The resulting map of pollination benefits identifies hot spots of pollination benefits at sufficient detail to guide political decisions on where to protect pollination services by investing in structural diversity of land use. Additionally, we investigated the vulnerability of the national economies with respect to potential decline of pollination services as the portion of the (agricultural) economy depending on pollination benefits. While the general dependency of the agricultural economy on pollination seems to be stable from 1993 until 2009, we see increases in producer prices for pollination dependent crops, which we interpret as an early warning signal for a conflict between pollination service and other land uses at the global scale. Our spatially explicit analysis of global pollination benefit points to hot spots for the generation of pollination benefits and can serve as a base for further planning of land use, protection sites and agricultural policies for maintaining pollination services

    A global synthesis reveals biodiversity-mediated benefits for crop production

    Get PDF
    Human land use threatens global biodiversity and compromises multiple ecosystem functions critical tofood production. Whether crop yield–related ecosystem services can be maintained by a few dominantspecies or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 loca-tions), we partition the relative importance of species richness, abundance, and dominance for pollination;biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemyrichness directly supported ecosystem services in addition to and independent of abundance and domi-nance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due torichness losses of service-providingorganisms, with negative consequences for crop yields. Maintainingthe biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystembenefits to society
    corecore