320 research outputs found

    Quantification of asbestos and other mineral phase burden in necroscopic human lung tissues with a new method

    Get PDF
    Background: A large amount of studies on asbestos exposure reconstruction have been so far conducted digesting the lung tissues with appropriate reagents, separating the powder from the digestion liquid by filtration and analysing the residue by optical or electron microscopy. This analytical approach has good sensitivity but is not yet well standardized, the investigated portion is not representative of the bulk sample, the results are often characterized by lack of reproducibility and repeatability. Moreover, the numeric quantification of asbestos requires a time-consuming particle by particle analysis. Aim: to develop a new method for the complete quantitative characterization of asbestos and other mineral phases in human lung tissue. Methods: The new method is based on sodium hypochlorite digestion, separation and XRPD analysis. The XRPD approach needs moderate lung tissue amounts (at least 20 g of wet tissue), but allows to conduct a complete quantitative characterization of each crystalline phase in the sample giving bulk-representative results with good reproducibility, accuracy and precision. The detection limit of conventional XRPD was considerably improved by a novel instrumental setting and weight concentrations can be obtained, giving additional information to numeric ones, preferable in clinical and pathogenetic studies but probably not for the exposure reconstruction. Results: Among the analysed autoptic lung tissues, ten samples belonged to subjects occupationally exposed to asbestos and six were collected from urban area controls. Asbestos phases were detected in none of controls and in 5 of 10 occupationally exposed subjects (those with highest exposure history) indicating that this method is suitable for the reconstruction of medium and high asbestos exposures. It has been furthermore confirmed the mineral association found in previous studies: mainly composed by quartz, talc, clay minerals, micas, Fe-Al-Ti oxides and bio-minerals such Ca-phosphates, carbonates and oxalates

    Local structural studies of Ba1−x_{1-x}Kx_xFe2_2As2_2 using atomic pair distribution function analysis

    Full text link
    Systematic local structural studies of Ba1−x_{1-x}Kx_xFe2_2As2_2 system are undertaken at room temperature using atomic pair distribution function (PDF) analysis. The local structure of the Ba1−x_{1-x}Kx_xFe2_2As2_2 is found to be well described by the long-range structure extracted from the diffraction experiments, but with anisotropic atomic vibrations of the constituent atoms (U11U_{11} = U22≠U33U_{22} \ne U_{33}). The crystal unit cell parameters, the FeAs4_4 tetrahedral angle and the pnictogen height above the Fe-plane are seen to show systematic evolution with K doping, underlining the importance of the structural changes, in addition to the charge doping, in determining the properties of Ba1−x_{1-x}Kx_xFe2_2As2_2

    Matrix interpretation of multiple orthogonality

    Get PDF
    In this work we give an interpretation of a (s(d + 1) + 1)-term recurrence relation in terms of type II multiple orthogonal polynomials.We rewrite this recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. We present a matrix interpretation of the type II multi-orthogonality conditions.We state a Favard type theorem and the expression for the resolvent function associated to the vector of linear functionals. Finally a reinterpretation of the type II Hermite- Padé approximation in matrix form is given

    On Fourier integral transforms for qq-Fibonacci and qq-Lucas polynomials

    Full text link
    We study in detail two families of qq-Fibonacci polynomials and qq-Lucas polynomials, which are defined by non-conventional three-term recurrences. They were recently introduced by Cigler and have been then employed by Cigler and Zeng to construct novel qq-extensions of classical Hermite polynomials. We show that both of these qq-polynomial families exhibit simple transformation properties with respect to the classical Fourier integral transform

    Tests of Micro-Pattern Gaseous Detectors for Active Target Time Projection Chambers in nuclear physics

    Get PDF
    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm2 pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics
    • …
    corecore