84 research outputs found

    On-line recognition of supernova neutrino bursts in the LVD detector

    Full text link
    In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an "external trigger", e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.Comment: Accepted for pubblication on Astroparticle Physics. 13 pages, 10 figure

    First CNGS events detected by LVD

    Get PDF
    The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band νμ\nu_{\mu} beam at CERN and send it toward the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the ντ\nu_{\tau} appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of 7.6 10177.6~10^{17} protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Montecarlo simulations.Comment: Accepted for publication by the European Physical Journal C ; 7 pages, 11 figure

    Search for low energy neutrinos in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001

    Get PDF
    We report on a search for low-energy neutrino (antineutrino) bursts in correlation with the 8 time coincident events observed by the gravitational waves detectors EXPLORER and NAUTILUS (GWD) during the year 2001. The search, conducted with the LVD detector (INFN Gran Sasso National Laboratory, Italy), has considered several neutrino reactions, corresponding to different neutrino species, and a wide range of time intervals around the (GWD) observed events. No evidence for statistically significant correlated signals in LVD has been found. Assuming two different origins for neutrino emission, the cooling of a neutron star from a core-collapse supernova or from coalescing neutron stars and the accretion of shocked matter, and taking into account neutrino oscillations, we derive limits to the total energy emitted in neutrinos and to the amount of accreting mass, respectively.Comment: Accepted for publication in Astronomy and Astrophysic

    Study of single muons with the Large Volume Detector at Gran Sasso Laboratory

    Get PDF
    The present study is based on the sample of about 3 mln single muons observed by LVD at underground Gran Sasso Laboratory during 36500 live hours from June 1992 to February 1998. We have measured the muon intensity at slant depths from 3 km w.e. to 20 km w.e. Most events are high energy downward muons produced by meson decay in the atmosphere. The analysis of these muons has revealed the power index of pion and kaon spectrum: 2.76 \pm 0.05. The reminders are horizontal muons produced by the neutrino interactions in the rock surrounding LVD. The value of this flux is obtained. The results are compared with Monte Carlo simulations and the world data.Comment: 13 pages, 2 figures, accepted for publication in "Physics of Atomic Nuclei

    Muon `Depth -- Intensity' Relation Measured by LVD Underground Experiment and Cosmic-Ray Muon Spectrum at Sea Level

    Get PDF
    We present the analysis of the muon events with all muon multiplicities collected during 21804 hours of operation of the first LVD tower. The measured angular distribution of muon intensity has been converted to the `depth -- vertical intensity' relation in the depth range from 3 to 12 km w.e.. The analysis of this relation allowed to derive the power index, γ\gamma, of the primary all-nucleon spectrum: γ=2.78±0.05\gamma=2.78 \pm 0.05. The `depth -- vertical intensity' relation has been converted to standard rock and the comparison with the data of other experiments has been done. We present also the derived vertical muon spectrum at sea level.Comment: 7 pages, 3 figures, to be published on Phys. Rev.

    Upper Limit on the Prompt Muon Flux Derived from the LVD Underground Experiment

    Get PDF
    We present the analysis of the muon events with all muon multiplicities collected during 21804 hours of operation of the first LVD tower. The measured depth-angular distribution of muon intensities has been used to obtain the normalization factor, A, the power index, gamma, of the primary all-nucleon spectrum and the ratio, R_c, of prompt muon flux to that of pi-mesons - the main parameters which determine the spectrum of cosmic ray muons at the sea level. The value of gamma = 2.77 +/- 0.05 (68% C.L.) and R_c < 2.0 x 10^-3 (95% C.L.) have been obtained. The upper limit to the prompt muon flux favours the models of charm production based on QGSM and the dual parton model.Comment: 10 pages, 4 figures, RevTex. To appear in Phys. Rev.
    • …
    corecore