359 research outputs found

    Automated electropolishing

    Get PDF

    Small-scale systems of galaxies. IV. Searching for the faint galaxy population associated with X-ray detected isolated E+S pairs

    Full text link
    In hierarchical evolutionary scenarios, isolated, physical pairs may represent an intermediate phase, or "way station", between collapsing groups and isolated elliptical (E) galaxies (or fossil groups). We started a comprehensive study of a sample of galaxy pairs composed of a giant E and a spiral (S) with the aim of investigating their formation/evolutionary history from observed optical and X-ray properties. Here we present VLT-VIMOS observations designed to identify faint galaxies associated with the E+S systems from candidate lists generated using photometric criteria on WFI images covering an area of ~ 0.2 h^{-1} Mpc radius around the pairs. The results are discussed in the context of the evolution of poor galaxy group associations. A comparison between the Optical Luminosity Functions (OLFs) of our E+S systems and a sample of X-ray bright poor groups suggest that the OLF of X-ray detected poor galaxy systems is not universal. The OLF of our X-ray bright systems suggests that they are more dynamically evolved than our X-ray faint sample and some X-ray bright groups in the literature. However, we suggest that the X-ray faint E+S pairs represent a phase in the dynamical evolution of some X-ray bright poor galaxy groups. The recent or ongoing interaction in which the E member of the X-ray faint pairs is involved could have decreased the luminosity of any surrounding X-ray emitting gas.Comment: accepted for publication in Astronomy and Astrophysic

    Moving constraints as stabilizing controls in classical mechanics

    Full text link
    The paper analyzes a Lagrangian system which is controlled by directly assigning some of the coordinates as functions of time, by means of frictionless constraints. In a natural system of coordinates, the equations of motions contain terms which are linear or quadratic w.r.t.time derivatives of the control functions. After reviewing the basic equations, we explain the significance of the quadratic terms, related to geodesics orthogonal to a given foliation. We then study the problem of stabilization of the system to a given point, by means of oscillating controls. This problem is first reduced to the weak stability for a related convex-valued differential inclusion, then studied by Lyapunov functions methods. In the last sections, we illustrate the results by means of various mechanical examples.Comment: 52 pages, 4 figure

    VEGAS: a VST Early-type GAlaxy Survey. IV. NGC 1533, IC 2038 and IC 2039: an interacting triplet in the Dorado group

    Get PDF
    This paper focuses on NGC 1533 and the pair IC 2038 and IC 2039 in Dorado a nearby, clumpy, still un-virialized group. We obtained their surface photometry from deep OmegaCAM@ESO-VST images in g and r bands. For NGC 1533, we map the surface brightness down to μg30.11\mu_g \simeq 30.11 mag/arcsec2^{2} and μr28.87\mu_r \simeq 28.87 mag/arcsec2^{2} and out to about 4Re4R_e. At such faint levels the structure of NGC 1533 appear amazingly disturbed with clear structural asymmetry between inner and outer isophotes in the North-East direction. We detect new spiral arm-like tails in the outskirts, which might likely be the signature of a past interaction/merging event. Similarly, IC 2038 and IC 2039 show tails and distortions indicative of their ongoing interaction. Taking advantages of deep images, we are able to detect the optical counterpart to the HI gas. The analysis of the new deep data suggests that NGC 1533 had a complex history made of several interactions with low-mass satellites that generated the star-forming spiral-like structure in the inner regions and are shaping the stellar envelope. In addition, the VST observations show that also the two less luminous galaxies, IC 2038 and IC 2039, are probably interacting each-other and, in the past, IC 2038 could have also interacted with NGC 1533, which stripped away gas and stars from its outskirts. The new picture emerging from this study is of an interacting triplet, where the brightest galaxy NGC 1533 has ongoing mass assembly in the outskirts.Comment: Accepted for publication in The Astronomical Journal. High-resolution version of paper is available at the following link: https://www.dropbox.com/preview/VEGAS_IV.pdf?role=persona

    Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    Get PDF
    Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0nubb decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric 0nubb experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. We highlight the main challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ

    Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals

    Full text link
    We report the results of a search for axions from the 14.4 keV M1 transition from Fe-57 in the core of the sun using the axio-electric effect in TeO2 bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made using a newly developed low energy trigger which was optimized to reduce the detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the flavor-singlet axial vector matrix element. Bounds are given for the interval 0.15 < S < 0.55.Comment: 14 pages, 6 figures, submitted to JCA

    The low energy spectrum of TeO2 bolometers: results and dark matter perspectives for the CUORE-0 and CUORE experiments

    Get PDF
    We collected 19.4 days of data from four 750 g TeO2 bolometers, and in three of them we were able to set the energy threshold around 3 keV using a new analysis technique. We found a background rate ranging from 25 cpd/keV/kg at 3 keV to 2 cpd/keV/kg at 25 keV, and a peak at 4.7 keV. The origin of this peak is presently unknown, but its presence is confirmed by a reanalysis of 62.7 kg.days of data from the finished CUORICINO experiment. Finally, we report the expected sensitivities of the CUORE0 (52 bolometers) and CUORE (988 bolometers) experiments to a WIMP annual modulation signal.Comment: 9 pages, 10 figure

    Validation of techniques to mitigate copper surface contamination in CUORE

    Get PDF
    In this article we describe the background challenges for the CUORE experiment posed by surface contamination of inert detector materials such as copper, and present three techniques explored to mitigate these backgrounds. Using data from a dedicated test apparatus constructed to validate and compare these techniques we demonstrate that copper surface contamination levels better than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit on the number of background counts in the region of interest is 0.02-0.03 counts/keV/kg/y depending on the adopted mitigation technique.Comment: 10 pages, 6 figures, 6 table

    CUORE-0 results and prospects for the CUORE experiment

    Full text link
    With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.Comment: 10 pages, 3 figures, to appear in the proceedings of NEUTRINO 2014, 26th International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, held at Boston, Massachusetts, US
    corecore