359 research outputs found
Small-scale systems of galaxies. IV. Searching for the faint galaxy population associated with X-ray detected isolated E+S pairs
In hierarchical evolutionary scenarios, isolated, physical pairs may
represent an intermediate phase, or "way station", between collapsing groups
and isolated elliptical (E) galaxies (or fossil groups). We started a
comprehensive study of a sample of galaxy pairs composed of a giant E and a
spiral (S) with the aim of investigating their formation/evolutionary history
from observed optical and X-ray properties. Here we present VLT-VIMOS
observations designed to identify faint galaxies associated with the E+S
systems from candidate lists generated using photometric criteria on WFI images
covering an area of ~ 0.2 h^{-1} Mpc radius around the pairs.
The results are discussed in the context of the evolution of poor galaxy
group associations. A comparison between the Optical Luminosity Functions
(OLFs) of our E+S systems and a sample of X-ray bright poor groups suggest that
the OLF of X-ray detected poor galaxy systems is not universal. The OLF of our
X-ray bright systems suggests that they are more dynamically evolved than our
X-ray faint sample and some X-ray bright groups in the literature. However, we
suggest that the X-ray faint E+S pairs represent a phase in the dynamical
evolution of some X-ray bright poor galaxy groups. The recent or ongoing
interaction in which the E member of the X-ray faint pairs is involved could
have decreased the luminosity of any surrounding X-ray emitting gas.Comment: accepted for publication in Astronomy and Astrophysic
Moving constraints as stabilizing controls in classical mechanics
The paper analyzes a Lagrangian system which is controlled by directly
assigning some of the coordinates as functions of time, by means of
frictionless constraints. In a natural system of coordinates, the equations of
motions contain terms which are linear or quadratic w.r.t.time derivatives of
the control functions. After reviewing the basic equations, we explain the
significance of the quadratic terms, related to geodesics orthogonal to a given
foliation. We then study the problem of stabilization of the system to a given
point, by means of oscillating controls. This problem is first reduced to the
weak stability for a related convex-valued differential inclusion, then studied
by Lyapunov functions methods. In the last sections, we illustrate the results
by means of various mechanical examples.Comment: 52 pages, 4 figure
VEGAS: a VST Early-type GAlaxy Survey. IV. NGC 1533, IC 2038 and IC 2039: an interacting triplet in the Dorado group
This paper focuses on NGC 1533 and the pair IC 2038 and IC 2039 in Dorado a
nearby, clumpy, still un-virialized group. We obtained their surface photometry
from deep OmegaCAM@ESO-VST images in g and r bands. For NGC 1533, we map the
surface brightness down to mag/arcsec and mag/arcsec and out to about . At such faint levels
the structure of NGC 1533 appear amazingly disturbed with clear structural
asymmetry between inner and outer isophotes in the North-East direction. We
detect new spiral arm-like tails in the outskirts, which might likely be the
signature of a past interaction/merging event. Similarly, IC 2038 and IC 2039
show tails and distortions indicative of their ongoing interaction. Taking
advantages of deep images, we are able to detect the optical counterpart to the
HI gas. The analysis of the new deep data suggests that NGC 1533 had a complex
history made of several interactions with low-mass satellites that generated
the star-forming spiral-like structure in the inner regions and are shaping the
stellar envelope. In addition, the VST observations show that also the two less
luminous galaxies, IC 2038 and IC 2039, are probably interacting each-other
and, in the past, IC 2038 could have also interacted with NGC 1533, which
stripped away gas and stars from its outskirts. The new picture emerging from
this study is of an interacting triplet, where the brightest galaxy NGC 1533
has ongoing mass assembly in the outskirts.Comment: Accepted for publication in The Astronomical Journal. High-resolution
version of paper is available at the following link:
https://www.dropbox.com/preview/VEGAS_IV.pdf?role=persona
Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors
Neutrinoless double beta decay (0nubb) is one of the most sensitive probes
for physics beyond the Standard Model, providing unique information on the
nature of neutrinos. In this paper we review the status and outlook for
bolometric 0nubb decay searches. We summarize recent advances in background
suppression demonstrated using bolometers with simultaneous readout of heat and
light signals. We simulate several configurations of a future CUORE-like
bolometer array which would utilize these improvements and present the
sensitivity reach of a hypothetical next-generation bolometric 0nubb
experiment. We demonstrate that a bolometric experiment with the isotope mass
of about 1 ton is capable of reaching the sensitivity to the effective Majorana
neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the
so-called inverted neutrino mass hierarchy region. We highlight the main
challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ
Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals
We report the results of a search for axions from the 14.4 keV M1 transition
from Fe-57 in the core of the sun using the axio-electric effect in TeO2
bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a
facility used to test bolometers for the CUORE experiment at the Laboratori
Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made
using a newly developed low energy trigger which was optimized to reduce the
detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established
at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the
Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the
flavor-singlet axial vector matrix element. Bounds are given for the interval
0.15 < S < 0.55.Comment: 14 pages, 6 figures, submitted to JCA
The low energy spectrum of TeO2 bolometers: results and dark matter perspectives for the CUORE-0 and CUORE experiments
We collected 19.4 days of data from four 750 g TeO2 bolometers, and in three
of them we were able to set the energy threshold around 3 keV using a new
analysis technique. We found a background rate ranging from 25 cpd/keV/kg at 3
keV to 2 cpd/keV/kg at 25 keV, and a peak at 4.7 keV. The origin of this peak
is presently unknown, but its presence is confirmed by a reanalysis of 62.7
kg.days of data from the finished CUORICINO experiment. Finally, we report the
expected sensitivities of the CUORE0 (52 bolometers) and CUORE (988 bolometers)
experiments to a WIMP annual modulation signal.Comment: 9 pages, 10 figure
Validation of techniques to mitigate copper surface contamination in CUORE
In this article we describe the background challenges for the CUORE
experiment posed by surface contamination of inert detector materials such as
copper, and present three techniques explored to mitigate these backgrounds.
Using data from a dedicated test apparatus constructed to validate and compare
these techniques we demonstrate that copper surface contamination levels better
than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels
are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit
on the number of background counts in the region of interest is 0.02-0.03
counts/keV/kg/y depending on the adopted mitigation technique.Comment: 10 pages, 6 figures, 6 table
CUORE-0 results and prospects for the CUORE experiment
With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV
(0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory
for Rare Events) experiment aims at searching for neutrinoless double beta
decay of 130Te with unprecedented sensitivity. Expected to start data taking in
2015, CUORE is currently in an advanced construction phase at LNGS. CUORE
projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1
sigma (9.5E25 y at the 90% confidence level), in five years of live time,
corresponding to an upper limit on the effective Majorana mass in the range
40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric
detectors could improve CUORE sensitivity and competitiveness of bolometric
detectors towards a full analysis of the inverted neutrino mass hierarchy.
CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE
experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g
each, arranged in a 13 floor structure) constructed strictly following CUORE
recipes both for materials and assembly procedures. An experiment its own,
CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta
decay half-life of 130Te around 3E24 y in one year of live time. We present an
update of the data, corresponding to an exposure of 18.1 kg y. An analysis of
the background indicates that the CUORE performance goal is satisfied while the
sensitivity goal is within reach.Comment: 10 pages, 3 figures, to appear in the proceedings of NEUTRINO 2014,
26th International Conference on Neutrino Physics and Astrophysics, 2-7 June
2014, held at Boston, Massachusetts, US
- …
