19 research outputs found

    Evolutional and clinical implications of the epigenetic regulation of protein glycosylation

    Get PDF
    Protein N glycosylation is an ancient posttranslational modification that enriches protein structure and function. The addition of one or more complex oligosaccharides (glycans) to the backbones of the majority of eukaryotic proteins makes the glycoproteome several orders of magnitude more complex than the proteome itself. Contrary to polypeptides, which are defined by a sequence of nucleotides in the corresponding genes, glycan parts of glycoproteins are synthesized by the activity of hundreds of factors forming a complex dynamic network. These are defined by both the DNA sequence and the modes of regulating gene expression levels of all the genes involved in N glycosylation. Due to the absence of a direct genetic template, glycans are particularly versatile and apparently a large part of human variation derives from differences in protein glycosylation. However, composition of the individual glycome is temporally very constant, indicating the existence of stable regulatory mechanisms. Studies of epigenetic mechanisms involved in protein glycosylation are still scarce, but the results suggest that they might not only be important for the maintenance of a particular glycophenotype through cell division and potentially across generations but also for the introduction of changes during the adaptive evolution

    Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease

    Get PDF
    Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression

    Unlocking cancer glycomes from histopathological formalin-fixed and paraffin-embedded (FFPE) tissue microdissections

    Get PDF
    N- and O-glycans are attractive clinical biomarkers as glycosylation changes in response to diseases. The limited availability of defined clinical specimens impedes glyco-biomarker identification and validation in large patient cohorts. Formalin-fixed paraffin-embedded (FFPE) clinical specimens are the common form of sample preservation in clinical pathology, but qualitative and quantitative N- and O-glycomics of such samples has not been feasible to date. Here, we report a highly sensitive and glycan isomer selective method for simultaneous N- and O-glycomics from histopathological slides. As few as 2,000 cells isolated from FFPE tissue sections by laser capture microdissection were sufficient for in-depth histopathology-glycomics using porous graphitized carbon nanoLC ESI-MS/MS. N- and O-glycan profiles were similar between unstained and hematoxylin and eosin stained FFPE samples but differed slightly compared to fresh tissue. This method provides the key to unlock glyco-biomarker information from FFPE histopathological tissues archived in pathology laboratories worldwide

    Glycosylation of immunoglobulin g: role of genetic and epigenetic influences

    Get PDF
    Objective To determine the extent to which genetic and epigenetic factors contribute to variations in glycosylation of immunoglobulin G (IgG) in humans. Methods 76 N-glycan traits in circulating IgG were analyzed by UPLC in 220 monozygotic and 310 dizygotic twin pairs from TwinsUK. A classical twin study design was used to derive the additive genetic, common and unique environmental components defining the variance in these traits. Epigenome-wide association analysis was performed using the Illumina 27k chip. Results 51 of the 76 glycan traits studied have an additive genetic component (heritability, h2)≥ 0.5. In contrast, 12 glycan traits had a low genetic contribution (h2<0.35). We then tested for association between methylation levels and glycan levels (P<2 x10-6). Among glycan traits with low heritability probe cg08392591 maps to a CpG island 5’ from the ANKRD11 gene, a p53 activator on chromosome 16. Probe cg26991199 maps to the SRSF10 gene involved in regulation of RNA splicing and particularly in regulation of splicing of mRNA precursors upon heat shock. Among those with high heritability we found cg13782134 (mapping to the NRN1L gene) and cg16029957 mapping near the QPCT gene to be array-wide significant. The proportion of array-wide epigenetic associations was significantly larger (P<0.005) among glycans with low heritability (42%) than in those with high heritability (6.2%). Conclusions Glycome analyses might provide a useful integration of genetic and non-genetic factors to further our understanding of the role of glycosylation in both normal physiology and disease

    Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease

    No full text
    Background: Many genome- and epigenome-wide association studies (GWAS and EWAS) and studies of promoter methylation of candidate genes for inflammatory bowel disease (IBD) have demonstrated significant associations between genetic and epigenetic changes and IBD. Independent GWA studies have identified genetic variants in the BACH2, IL6ST, LAMB1, IKZF1, and MGAT3 loci to be associated with both IBD and immunoglobulin G (IgG) glycosylation. Methods: Using bisulfite pyrosequencing, we analyzed CpG methylation in promoter regions of these five genes from peripheral blood of several hundred IBD patients and healthy controls (HCs) from two independent cohorts, respectively. Results: We found significant differences in the methylation levels in the MGAT3 and BACH2 genes between both Crohn's disease and ulcerative colitis when compared to HC. The same pattern of methylation changes was identified for both genes in CD19 + B cells isolated from the whole blood of a subset of the IBD patients. A correlation analysis was performed between the MGAT3 and BACH2 promoter methylation and individual IgG glycans, measured in the same individuals of the two large cohorts. MGAT3 promoter methylation correlated significantly with galactosylation, sialylation, and bisecting GlcNAc on IgG of the same patients, suggesting that activity of the GnT-III enzyme, encoded by this gene, might be altered in IBD. The correlations between the BACH2 promoter methylation and IgG glycans were less obvious, since BACH2 is not a glycosyltransferase and therefore may affect IgG glycosylation only indirectly. Conclusions: Our results suggest that epigenetic deregulation of key glycosylation genes might lead to an increase in pro-inflammatory properties of IgG in IBD through a decrease in galactosylation and sialylation and an increase of bisecting GlcNAc on digalactosylated glycan structures. Finally, we showed that CpG methylation in the promoter of the MGAT3 gene is altered in CD3 + T cells isolated from inflamed mucosa of patients with ulcerative colitis from a third smaller cohort, for which biopsies were available, suggesting a functional role of this glyco-gene in IBD pathogenesis.The authors would like to thank Stephanie Scott for her organizational and administrational contribution. The study has been funded by the EU FP7 grant European Commission IBD-BIOM (contract # 305479), EU FP7 Regional Potential Grant INTEGRA-Life (contract # 315997), European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare (contract # KK.01.1.1.01.0010), and Croatian Science Foundation grant EpiGlycoIgG (contract # 3361). Financial support from Portugal (PI: SSP): FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação in the framework of the project (POCI-01/0145-FEDER-016601; PTDC/DTP-PIC/0560/2014) was received. SSP also acknowledges the European Crohn’s and Colitis Organization (ECCO) and the “Broad Medical Research program at Crohn’s and Colitis Foundation of America-CCFA” for funding. SSP acknowledges the Portuguese Group of Study on IBD (GEDII) for funding. A.M.D. [PD/BD/105982/2014] also acknowledges FCT for funding. IBD-BIOM consortium: Daniel Kolarich (Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany), Manfred Wuhrer (Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, the Netherlands), Dermot P. B. McGovern (F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles), Iain K. Pemberton (IP Research Consulting SAS, Paris, France), Daniel IR Spencer (Ludger Ltd., Culham Science Centre, Oxford, UK, Daryl L. Fernandes (Ludger Ltd., Culham Science Centre, Oxford, UK), Rahul Kalla, Kate O’Leary, Alex T Adams, Hazel Drummond, Elaine Nimmo, Ray Boyapati, David C Wilson (Centre for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK), Ray Doran (Ludger Ltd., Culham Science Centre, Oxford, UK), Igor Rudan (all, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK), Paolo Lionetti (Paediatric Gastroenterology Unit, AOU Meyer, Viale Pieraccini, Florence, Italy), Natalia Manetti (Department of Medical and Surgical Sciences, Division of Gastroenterology, University Hospital Careggi, Florence, Italy), Fabrizio Bossa (Department of Medical Sciences, Division of Gastroenterology, IRCCS-CSS Hospital, Viale Cappuccini, Rotondo, Italy), Paola Cantoro, Anna Kohn (Division of Gastroenterology, S. Camillo Hospital, Rome, Italy), Giancarlo Sturniolo (Gastrointestinal Unit, University of Padua, Padua, Italy), Silvio Danese (IBD Unit, Humanitas Research Institute, Rozzano, Milan, Italy), Mariek Pierik (Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands), and David C. Wilson (Centre for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK). This independent research was generously supported by the following grants: EU FP7 research grant IBD-BIOM (contract # 305479) to JS, VA, GL, and VZ; EU FP7 Regional Potential Grant INTEGRA-Life (contract # 315997) to GL and VZ; European Structural and Investment Funds grant for the Croatian National Centre of Research Excellence in Personalized Healthcare (contract # KK.01.1.1.01.0010) to GL and VZ; Croatian Science Foundation grant EpiGlycoIgG (contract # 3361) to VZ; FEDER COMPETE 2020 POCI, Portugal 2020, and Portuguese funds through FCT (contracts # POCI-01/0145-FEDER-016601 and PTDC/DTP-PIC/0560/2014) to SP; and FTC (contract # PD/BD/105982/2014) to AMD

    Epigenetic silencing of HNF1A associates with changes in the composition of the human plasma N-glycome.

    No full text
    Protein glycosylation is a ubiquitous modification that affects the structure and function of proteins. Our recent genome wide association study identified transcription factor HNF1A as an important regulator of plasma protein glycosylation. To evaluate the potential impact of epigenetic regulation of HNF1A on protein glycosylation we analyzed CpG methylation in 810 individuals. The association between methylation of four CpG sites and the composition of plasma and IgG glycomes was analyzed. Several statistically significant associations were observed between HNF1A methylation and plasma glycans, while there were no significant associations with IgG glycans. The most consistent association with HNF1A methylation was observed with the increase in the proportion of highly branched glycans in the plasma N-glycome. The hypothesis that inactivation of HNF1A promotes branching of glycans was supported by the analysis of plasma N-glycomes in 61 patients with inactivating mutations in HNF1A, where the increase in plasma glycan branching was also observed. This study represents the first demonstration of epigenetic regulation of plasma glycome composition, suggesting a potential mechanism by which epigenetic deregulation of the glycome may contribute to disease development

    Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease

    Get PDF
    Background Many genome- and epigenome-wide association studies (GWAS and EWAS) and studies of promoter methylation of candidate genes for inflammatory bowel disease (IBD) have demonstrated significant associations between genetic and epigenetic changes and IBD. Independent GWA studies have identified genetic variants in the BACH2, IL6ST, LAMB1, IKZF1, and MGAT3 loci to be associated with both IBD and immunoglobulin G (IgG) glycosylation. Methods Using bisulfite pyrosequencing, we analyzed CpG methylation in promoter regions of these five genes from peripheral blood of several hundred IBD patients and healthy controls (HCs) from two independent cohorts, respectively. Results We found significant differences in the methylation levels in the MGAT3 and BACH2 genes between both Crohn’s disease and ulcerative colitis when compared to HC. The same pattern of methylation changes was identified for both genes in CD19+ B cells isolated from the whole blood of a subset of the IBD patients. A correlation analysis was performed between the MGAT3 and BACH2 promoter methylation and individual IgG glycans, measured in the same individuals of the two large cohorts. MGAT3 promoter methylation correlated significantly with galactosylation, sialylation, and bisecting GlcNAc on IgG of the same patients, suggesting that activity of the GnT-III enzyme, encoded by this gene, might be altered in IBD. The correlations between the BACH2 promoter methylation and IgG glycans were less obvious, since BACH2 is not a glycosyltransferase and therefore may affect IgG glycosylation only indirectly. Conclusions Our results suggest that epigenetic deregulation of key glycosylation genes might lead to an increase in pro-inflammatory properties of IgG in IBD through a decrease in galactosylation and sialylation and an increase of bisecting GlcNAc on digalactosylated glycan structures. Finally, we showed that CpG methylation in the promoter of the MGAT3 gene is altered in CD3+ T cells isolated from inflamed mucosa of patients with ulcerative colitis from a third smaller cohort, for which biopsies were available, suggesting a functional role of this glyco-gene in IBD pathogenesis.</p
    corecore