944 research outputs found

    Estrogen Levels in House Wren (Troglodytes aedon) Egg Yolks

    Get PDF
    Estrogen, when present in early embryonic development, regulates sexual differentiation in the avian nestling and adult. In this study, I developed a procedure to extract and quantify levels (by radioimmunoassay) of the estrogen, 17[beta]-estradiol, in house wren (Troglodytes aedon) egg yolk. Levels of 17[beta]-estradiol found in one clutch of eggs increased with the order of laying, indicating female house wrens may be capable of regulating the levels of 17[beta]-estradiol received by the offspring. Since the attraction of mates is often aided by the display of sex differences, maternal control of 17[beta]-estradiol levels in the embryo may influence the future reproductive success of her offspring

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Pion-Xi correlations in Au-Au collisions at STAR

    Full text link
    We present pion-Xi correlation analysis in Au-Au collisions at sqrt(s_NN)= 200 GeV and sqrt(s_NN) = 62.4 GeV, performed using the STAR detector at RHIC. A Xi*(1530) resonance signal is observed for the first time in Au-Au collisions. Experimental data are compared with theoretical predictions. The strength of the Xi* peak is reproduced in the correlation function assuming that pions and Xis emerge from a system in collective expansion.Comment: To appear in the proceedings of 18th Nuclear Physics Division Conference of the EPS (NPDC18),Prague, 23.8.-29.8. 200

    Transverse momentum and collision energy dependence of high pTp_{T} hadron suppression in Au+Au collisions at ultrarelativistic energies

    Get PDF
    We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at \sqrtsNN=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5\lt\pT\lt12 GeV/c. The collision energy dependence of the yields and the centrality and \pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of \pT-dependent suppression, which may be expected from models incorporating jet attentuation in cold nuclear matter or scattering of fragmentation hadrons.Comment: Final journal version. Data tables for figures may be downloaded from the STAR home page: http://www.star.bnl.gov --> Publications --> Access to STAR published dat

    Correlations in STAR: interferometry and event structure

    Full text link
    STAR observes a complex picture of RHIC collisions where correlation effects of different origins -- initial state geometry, semi-hard scattering, hadronization, as well as final state interactions such as quantum intensity interference -- coexist. Presenting the measurements of flow, mini-jet deformation, modified hadronization, and the Hanbury Brown and Twiss effect, we trace the history of the system from the initial to the final state. The resulting picture is discussed in the context of identifying the relevant degrees of freedom and the likely equilibration mechanism.Comment: 8 pages, 6 figures, plenary talk at the 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, to appear in Journal of Physics G (http://www.iop.org

    Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at s(NN)**(1/2) = 200-GeV

    Get PDF
    We present STAR measurements of the azimuthal anisotropy parameter v2v_2 and the binary-collision scaled centrality ratio RCPR_{CP} for kaons and lambdas (Λ+Λˉ\Lambda+\bar{\Lambda}) at mid-rapidity in Au+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. In combination, the v2v_2 and RCPR_{CP} particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT5p_T \approx 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The KS0K_S^0 and Λ+Λˉ\Lambda+\bar{\Lambda} v2v_2 values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.Comment: 6 pages, 4 figures, 1 table. As published in PRL on Feb. 2, 2004; Significant revisions have been made to the text and color has been added to plot

    Inclusive pi0 spectra at high transverse momentum in d-Au collisions at RHIC

    Full text link
    Preliminary results on inclusive neutral pion production in d-Au collisions at sqrt(s_NN) = 200 GeV in the pseudo-rapidity range 0<eta<1 are presented. The measurement is performed using the STAR Barrel Electromagnetic calorimeter (BEMC). In this paper, the analysis of the first BEMC hadron measurement is described and the results are compared with earlier RHIC findings. The pi0 invariant differential cross sections show good agreement with next-to-leading order (NLO) perturbative QCD calculations.Comment: 4 pages, 5 figures, 18th Nuclear Physics Division Conference of the EPS, Prague, submitted to Nucl. Phys.

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Evidence from d+Au measurements for final-state suppression of high pTp_T hadrons in Au+Au collisions at RHIC

    Full text link
    We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high pTp_T) in minimum bias and central d+Au collisions at sNN\sqrt{s_{NN}}=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high pTp_T previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.Comment: Final journal version. Data tables for figures may be downloaded from the STAR home page: http://www.star.bnl.gov --> Publications --> Access to STAR published dat
    corecore